Suppr超能文献

基于胸部X光图像的深度学习方法对COVID-19分类的评估。

Evaluation of deep learning-based approaches for COVID-19 classification based on chest X-ray images.

作者信息

Kc Kamal, Yin Zhendong, Wu Mingyang, Wu Zhilu

机构信息

School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, 150001 China.

出版信息

Signal Image Video Process. 2021;15(5):959-966. doi: 10.1007/s11760-020-01820-2. Epub 2021 Jan 7.

Abstract

The COVID-19, novel coronavirus or SARS-Cov-2, has claimed hundreds of thousands of lives and affected millions of people all around the world with the number of deaths and infections growing exponentially. Deep convolutional neural network (DCNN) has been a huge milestone for image classification task including medical images. Transfer learning of state-of-the-art models have proven to be an efficient method of overcoming deficient data problem. In this paper, a thorough evaluation of eight pre-trained models is presented. Training, validating, and testing of these models were performed on chest X-ray (CXR) images belonging to five distinct classes, containing a total of 760 images. Fine-tuned models, pre-trained in ImageNet dataset, were computationally efficient and accurate. Fine-tuned DenseNet121 achieved a test accuracy of 98.69% and macro f1-score of 0.99 for four classes classification containing healthy, bacterial pneumonia, COVID-19, and viral pneumonia, and fine-tuned models achieved higher test accuracy for three-class classification containing healthy, COVID-19, and SARS images. The experimental results show that only 62% of total parameters were retrained to achieve such accuracy.

摘要

新型冠状病毒肺炎(COVID-19),即新型冠状病毒或严重急性呼吸综合征冠状病毒2(SARS-CoV-2),已导致全球数十万人死亡,数百万人受到影响,死亡人数和感染人数呈指数级增长。深度卷积神经网络(DCNN)在包括医学图像在内的图像分类任务中是一个巨大的里程碑。事实证明,最先进模型的迁移学习是克服数据不足问题的有效方法。本文对八个预训练模型进行了全面评估。这些模型的训练、验证和测试是在属于五个不同类别的胸部X光(CXR)图像上进行的,总共包含760张图像。在ImageNet数据集中预训练的微调模型计算效率高且准确。对于包含健康、细菌性肺炎、COVID-19和病毒性肺炎的四类分类,微调后的DenseNet121实现了98.69%的测试准确率和0.99的宏F1分数,对于包含健康、COVID-19和SARS图像的三类分类,微调后的模型实现了更高的测试准确率。实验结果表明,仅对62%的总参数进行重新训练就能达到这样的准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c41/7788389/1e833c995e15/11760_2020_1820_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验