Suppr超能文献

基于深度学习的单能 CT 生成脑双能 CT。

Generation of Brain Dual-Energy CT from Single-Energy CT Using Deep Learning.

机构信息

Department of Medical Imaging, Changhua Christian Hospital, 135 Nanxiao St, 500, Changhua County, Taiwan.

Department of Biomedical Engineering, University of California, Davis, CA, 95616, USA.

出版信息

J Digit Imaging. 2021 Feb;34(1):149-161. doi: 10.1007/s10278-020-00414-1. Epub 2021 Jan 11.

Abstract

Deep learning (DL) has shown great potential in conversions between various imaging modalities. Similarly, DL can be applied to synthesize a high-kV computed tomography (CT) image from its corresponding low-kV CT image. This indicates the feasibility of obtaining dual-energy CT (DECT) images without purchasing a DECT scanner. In this study, we investigated whether a low-to-high kV mapping was better than a high-to-low kV mapping. We used a U-Net model to perform conversions between different kV CT images. Moreover, we proposed a double U-Net model to improve the quality of original single-energy CT images. Ninety-eight patients who underwent brain DECT scans were used to train, validate, and test the proposed DL-based model. The results showed that the low-to-high kV conversion was better than the high-to-low kV conversion. In addition, the DL-based DECT images had better signal-to-noise ratios (SNRs) than the true (original) DECT images, but at the expense of a slight loss in spatial resolution. The mean CT number differences between the true and DL-based DECT images were within [Formula: see text] 1 HU. No statistically significant difference in CT number measurements was found between the true and DL-based DECT images (p > 0.05). The DL-based DECT images with improved SNR could produce low-noise virtual monoenergetic images. Our preliminary results indicate that DL has the potential to generate brain DECT images using single-energy brain CT images.

摘要

深度学习(DL)在各种成像模式之间的转换中显示出巨大的潜力。同样,DL 可应用于从相应的低千伏 CT 图像合成高千伏 CT 图像。这表明无需购买双能 CT(DECT)扫描仪即可获得双能 CT 图像的可行性。在这项研究中,我们研究了低千伏到高千伏的映射是否优于高千伏到低千伏的映射。我们使用 U-Net 模型在不同千伏 CT 图像之间进行转换。此外,我们提出了一种双 U-Net 模型来提高原始单能 CT 图像的质量。使用 98 例接受脑部 DECT 扫描的患者来训练、验证和测试基于 DL 的模型。结果表明,低千伏到高千伏的转换优于高千伏到低千伏的转换。此外,基于 DL 的 DECT 图像的信噪比(SNR)优于真实(原始)DECT 图像,但空间分辨率略有下降。真实和基于 DL 的 DECT 图像之间的 CT 数差值的平均值在 [公式:见文本] 1 HU 内。真实和基于 DL 的 DECT 图像之间的 CT 数测量值无统计学差异(p > 0.05)。具有改进 SNR 的基于 DL 的 DECT 图像可以生成低噪声虚拟单能图像。我们的初步结果表明,DL 有可能使用单能脑部 CT 图像生成脑部 DECT 图像。

相似文献

1
Generation of Brain Dual-Energy CT from Single-Energy CT Using Deep Learning.
J Digit Imaging. 2021 Feb;34(1):149-161. doi: 10.1007/s10278-020-00414-1. Epub 2021 Jan 11.
2
Noise reduction approach in pediatric abdominal CT combining deep learning and dual-energy technique.
Eur Radiol. 2021 Apr;31(4):2218-2226. doi: 10.1007/s00330-020-07349-9. Epub 2020 Oct 8.
3
Pseudo low-energy monochromatic imaging of head and neck cancers: Deep learning image reconstruction with dual-energy CT.
Int J Comput Assist Radiol Surg. 2022 Jul;17(7):1271-1279. doi: 10.1007/s11548-022-02627-x. Epub 2022 Apr 12.
4
Quantitative accuracy and dose efficiency of dual-contrast imaging using dual-energy CT: a phantom study.
Med Phys. 2020 Feb;47(2):441-456. doi: 10.1002/mp.13912. Epub 2019 Dec 10.
10
Noise reduction in dual-energy computed tomography virtual monoenergetic imaging.
J Appl Clin Med Phys. 2019 Sep;20(9):104-113. doi: 10.1002/acm2.12694. Epub 2019 Aug 7.

本文引用的文献

1
A gentle introduction to deep learning in medical image processing.
Z Med Phys. 2019 May;29(2):86-101. doi: 10.1016/j.zemedi.2018.12.003. Epub 2019 Jan 25.
3
Dual energy computed tomography for the head.
Jpn J Radiol. 2018 Feb;36(2):69-80. doi: 10.1007/s11604-017-0701-4. Epub 2017 Nov 9.
5
Deep Learning MR Imaging-based Attenuation Correction for PET/MR Imaging.
Radiology. 2018 Feb;286(2):676-684. doi: 10.1148/radiol.2017170700. Epub 2017 Sep 19.
6
Dual-Energy CT: New Horizon in Medical Imaging.
Korean J Radiol. 2017 Jul-Aug;18(4):555-569. doi: 10.3348/kjr.2017.18.4.555. Epub 2017 May 19.
7
Deep Learning in Medical Image Analysis.
Annu Rev Biomed Eng. 2017 Jun 21;19:221-248. doi: 10.1146/annurev-bioeng-071516-044442. Epub 2017 Mar 9.
8
Dual energy CT in radiotherapy: Current applications and future outlook.
Radiother Oncol. 2016 Apr;119(1):137-44. doi: 10.1016/j.radonc.2016.02.026. Epub 2016 Mar 11.
9
Dual- and Multi-Energy CT: Principles, Technical Approaches, and Clinical Applications.
Radiology. 2015 Sep;276(3):637-53. doi: 10.1148/radiol.2015142631.
10
Gibbs ringing in diffusion MRI.
Magn Reson Med. 2016 Jul;76(1):301-14. doi: 10.1002/mrm.25866. Epub 2015 Aug 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验