Suppr超能文献

基于深度卷积生成对抗网络的千伏 CT 在双能 CT 中进行单能量 CT 图像合成。

Image synthesis of monoenergetic CT image in dual-energy CT using kilovoltage CT with deep convolutional generative adversarial networks.

机构信息

Department of Radiation Oncology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan.

Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan.

出版信息

J Appl Clin Med Phys. 2021 Apr;22(4):184-192. doi: 10.1002/acm2.13190. Epub 2021 Feb 18.

Abstract

PURPOSE

To synthesize a dual-energy computed tomography (DECT) image from an equivalent kilovoltage computed tomography (kV-CT) image using a deep convolutional adversarial network.

METHODS

A total of 18,084 images of 28 patients are categorized into training and test datasets. Monoenergetic CT images at 40, 70, and 140 keV and equivalent kV-CT images at 120 kVp are reconstructed via DECT and are defined as the reference images. An image prediction framework is created to generate monoenergetic computed tomography (CT) images from kV-CT images. The accuracy of the images generated by the CNN model is determined by evaluating the mean absolute error (MAE), mean square error (MSE), relative root mean square error (RMSE), peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and mutual information between the synthesized and reference monochromatic CT images. Moreover, the pixel values between the synthetic and reference images are measured and compared using a manually drawn region of interest (ROI).

RESULTS

The difference in the monoenergetic CT numbers of the ROIs between the synthetic and reference monoenergetic CT images is within the standard deviation values. The MAE, MSE, RMSE, and SSIM are the smallest for the image conversion of 120 kVp to 140 keV. The PSNR is the smallest and the MI is the largest for the synthetic 70 keV image.

CONCLUSIONS

The proposed model can act as a suitable alternative to the existing methods for the reconstruction of monoenergetic CT images in DECT from single-energy CT images.

摘要

目的

使用深度卷积对抗网络从等效千伏 CT(kV-CT)图像合成双能 CT(DECT)图像。

方法

将 28 名患者的 18084 幅图像分为训练和测试数据集。通过 DECT 重建单能 CT 图像,分别为 40keV、70keV 和 140keV,以及等效的 120kVp kV-CT 图像,并将其定义为参考图像。创建了一个图像预测框架,以从 kV-CT 图像生成单能 CT 图像。通过评估均方误差 (MSE)、均方根误差 (RMSE)、峰值信噪比 (PSNR)、结构相似性指数 (SSIM) 和合成与参考单能 CT 图像之间的互信息,来确定 CNN 模型生成的图像的准确性。此外,通过手动绘制感兴趣区域 (ROI) 来测量和比较合成图像和参考图像之间的像素值。

结果

ROI 之间的合成和参考单能 CT 图像的单能 CT 数之间的差异在标准偏差值范围内。120kVp 到 140keV 的图像转换的 MAE、MSE、RMSE 和 SSIM 最小。70keV 合成图像的 PSNR 最小,MI 最大。

结论

该模型可作为 DECT 中单能 CT 图像重建的替代方法,从单能 CT 图像重建 DECT 中单能 CT 图像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a36/8035569/b6a61e4f40be/ACM2-22-184-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验