Suppr超能文献

亚微米尺度组织形态的纳米敏多重分形特征及其在肿瘤进展中的变化。

Characterization of nanosensitive multifractality in submicron scale tissue morphology and its alteration in tumor progression.

机构信息

National University of Ireland, Tissue Optics and Microcirculation Imaging, Galway, Ireland.

Linköping University, Biomedical Imaging and Spectroscopy, Clinical Instrument Translation, Linköpin, Sweden.

出版信息

J Biomed Opt. 2021 Jan;26(1). doi: 10.1117/1.JBO.26.1.016003.

Abstract

SIGNIFICANCE

Assessment of disease using optical coherence tomography is an actively investigated problem, owing to many unresolved challenges in early disease detection, diagnosis, and treatment response monitoring. The early manifestation of disease or precancer is typically associated with subtle alterations in the tissue dielectric and ultrastructural morphology. In addition, biological tissue is known to have ultrastructural multifractality.

AIM

Detection and characterization of nanosensitive structural morphology and multifractality in the tissue submicron structure. Quantification of nanosensitive multifractality and its alteration in progression of tumor.

APPROACH

We have developed a label free nanosensitive multifractal detrended fluctuation analysis(nsMFDFA) technique in combination with multifractal analysis and nanosensitive optical coherence tomography (nsOCT). The proposed method deployed for extraction and quantification of nanosensitive multifractal parameters in mammary fat pad (MFP).

RESULTS

Initially, the nsOCT approach is numerically validated on synthetic submicron axial structures. The nsOCT technique was applied to pathologically characterized MFP of murine breast tissue to extract depth-resolved nanosensitive submicron structures. Subsequently, two-dimensional MFDFA were deployed on submicron structural en face images to extract nanosensitive tissue multifractality. We found that nanosensitive multifractality increases in transition from healthy to tumor.

CONCLUSIONS

This method for extraction of nanosensitive tissue multifractality promises to provide a noninvasive diagnostic tool for early disease detection and monitoring treatment response. The novel ability to delineate the dominant submicron scale nanosensitive multifractal properties may also prove useful for characterizing a wide variety of complex scattering media of non-biological origin.

摘要

意义

使用光学相干断层扫描评估疾病是一个正在积极研究的问题,因为在早期疾病检测、诊断和治疗反应监测方面存在许多尚未解决的挑战。疾病或癌前病变的早期表现通常与组织介电常数和超微结构形态的细微改变有关。此外,众所周知,生物组织具有超微结构多重分形性。

目的

检测和描述组织亚微米结构中的纳米敏感结构形态和多重分形性。定量研究肿瘤进展过程中纳米敏感多重分形性及其变化。

方法

我们开发了一种无标记纳米敏感多重分形去趋势波动分析(nsMFDFA)技术,结合多重分形分析和纳米敏感光相干断层扫描(nsOCT)。该方法用于提取和量化乳腺脂肪垫(MFP)中的纳米敏感多重分形参数。

结果

首先,通过数值验证了 nsOCT 方法对合成亚微米轴向结构的有效性。该 nsOCT 技术应用于经过病理特征化的小鼠乳腺组织 MFP,以提取深度分辨的纳米敏感亚微米结构。随后,在亚微米结构的共焦图像上部署二维 MFDFA,以提取纳米敏感组织多重分形性。我们发现,从健康到肿瘤的转变过程中,纳米敏感多重分形性增加。

结论

这种提取纳米敏感组织多重分形性的方法有望为早期疾病检测和监测治疗反应提供一种非侵入性的诊断工具。这种区分主导亚微米尺度纳米敏感多重分形特性的新能力也可能对描述各种非生物起源的复杂散射介质非常有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2155/7797786/7525b5120f4b/JBO-026-016003-g001.jpg

相似文献

5
Mueller matrix approach for probing multifractality in the underlying anisotropic connective tissue.
J Biomed Opt. 2016 Sep 1;21(9):95004. doi: 10.1117/1.JBO.21.9.095004.
6
Skin cancer margin detection using nanosensitive optical coherence tomography and a comparative study with confocal microscopy.
Biomed Opt Express. 2022 Oct 7;13(11):5654-5666. doi: 10.1364/BOE.474334. eCollection 2022 Nov 1.
7
Multiscale assessment of the degree of multifractality for physiological time series.
Philos Trans A Math Phys Eng Sci. 2021 Dec 13;379(2212):20200254. doi: 10.1098/rsta.2020.0254. Epub 2021 Oct 25.
8
Probing multifractality in tissue refractive index: prospects for precancer detection.
Opt Lett. 2013 Jan 15;38(2):211-3. doi: 10.1364/OL.38.000211.
9
10
Multifractal analysis of uterine electromyography signals to differentiate term and preterm conditions.
Proc Inst Mech Eng H. 2019 Mar;233(3):362-371. doi: 10.1177/0954411919827323. Epub 2019 Feb 1.

引用本文的文献

1
Nanosensitive optical coherence tomography for detecting structural changes in stem cells.
Biomed Opt Express. 2023 Mar 3;14(4):1411-1427. doi: 10.1364/BOE.485082. eCollection 2023 Apr 1.
2
Nanoscale Prognosis of Colorectal Cancer Metastasis from AFM Image Processing of Histological Sections.
Cancers (Basel). 2023 Feb 14;15(4):1220. doi: 10.3390/cancers15041220.
4
Simulations of surface charge density changes during the untreated solid tumour growth.
R Soc Open Sci. 2022 Nov 30;9(11):220552. doi: 10.1098/rsos.220552. eCollection 2022 Nov.
5
Universal Markers Unveil Metastatic Cancerous Cross-Sections at Nanoscale.
Cancers (Basel). 2022 Jul 31;14(15):3728. doi: 10.3390/cancers14153728.
6
Molecular Contrast Optical Coherence Tomography and Its Applications in Medicine.
Int J Mol Sci. 2022 Mar 11;23(6):3038. doi: 10.3390/ijms23063038.

本文引用的文献

1
2
Nanosensitive optical coherence tomography to assess wound healing within the cornea.
Biomed Opt Express. 2020 Jun 2;11(7):3407-3422. doi: 10.1364/BOE.389342. eCollection 2020 Jul 1.
3
Noninvasive detection of nanoscale structural changes in cornea associated with cross-linking treatment.
J Biophotonics. 2020 Jun;13(6):e201960234. doi: 10.1002/jbio.201960234. Epub 2020 Feb 27.
4
Label-Free Optical Nanoscopy of Single-Layer Graphene.
ACS Nano. 2019 Aug 27;13(8):9673-9681. doi: 10.1021/acsnano.9b05054. Epub 2019 Aug 5.
6
Nanoscale Imaging of Kidney Glomeruli Using Expansion Pathology.
Front Med (Lausanne). 2018 Nov 21;5:322. doi: 10.3389/fmed.2018.00322. eCollection 2018.
8
Fluorescence nanoscopy in cell biology.
Nat Rev Mol Cell Biol. 2017 Nov;18(11):685-701. doi: 10.1038/nrm.2017.71. Epub 2017 Sep 6.
9
Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy.
Nat Biotechnol. 2017 Aug;35(8):757-764. doi: 10.1038/nbt.3892. Epub 2017 Jul 17.
10
Mueller matrix approach for probing multifractality in the underlying anisotropic connective tissue.
J Biomed Opt. 2016 Sep 1;21(9):95004. doi: 10.1117/1.JBO.21.9.095004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验