National University of Ireland, Tissue Optics and Microcirculation Imaging, Galway, Ireland.
Linköping University, Biomedical Imaging and Spectroscopy, Clinical Instrument Translation, Linköpin, Sweden.
J Biomed Opt. 2021 Jan;26(1). doi: 10.1117/1.JBO.26.1.016003.
Assessment of disease using optical coherence tomography is an actively investigated problem, owing to many unresolved challenges in early disease detection, diagnosis, and treatment response monitoring. The early manifestation of disease or precancer is typically associated with subtle alterations in the tissue dielectric and ultrastructural morphology. In addition, biological tissue is known to have ultrastructural multifractality.
Detection and characterization of nanosensitive structural morphology and multifractality in the tissue submicron structure. Quantification of nanosensitive multifractality and its alteration in progression of tumor.
We have developed a label free nanosensitive multifractal detrended fluctuation analysis(nsMFDFA) technique in combination with multifractal analysis and nanosensitive optical coherence tomography (nsOCT). The proposed method deployed for extraction and quantification of nanosensitive multifractal parameters in mammary fat pad (MFP).
Initially, the nsOCT approach is numerically validated on synthetic submicron axial structures. The nsOCT technique was applied to pathologically characterized MFP of murine breast tissue to extract depth-resolved nanosensitive submicron structures. Subsequently, two-dimensional MFDFA were deployed on submicron structural en face images to extract nanosensitive tissue multifractality. We found that nanosensitive multifractality increases in transition from healthy to tumor.
This method for extraction of nanosensitive tissue multifractality promises to provide a noninvasive diagnostic tool for early disease detection and monitoring treatment response. The novel ability to delineate the dominant submicron scale nanosensitive multifractal properties may also prove useful for characterizing a wide variety of complex scattering media of non-biological origin.
使用光学相干断层扫描评估疾病是一个正在积极研究的问题,因为在早期疾病检测、诊断和治疗反应监测方面存在许多尚未解决的挑战。疾病或癌前病变的早期表现通常与组织介电常数和超微结构形态的细微改变有关。此外,众所周知,生物组织具有超微结构多重分形性。
检测和描述组织亚微米结构中的纳米敏感结构形态和多重分形性。定量研究肿瘤进展过程中纳米敏感多重分形性及其变化。
我们开发了一种无标记纳米敏感多重分形去趋势波动分析(nsMFDFA)技术,结合多重分形分析和纳米敏感光相干断层扫描(nsOCT)。该方法用于提取和量化乳腺脂肪垫(MFP)中的纳米敏感多重分形参数。
首先,通过数值验证了 nsOCT 方法对合成亚微米轴向结构的有效性。该 nsOCT 技术应用于经过病理特征化的小鼠乳腺组织 MFP,以提取深度分辨的纳米敏感亚微米结构。随后,在亚微米结构的共焦图像上部署二维 MFDFA,以提取纳米敏感组织多重分形性。我们发现,从健康到肿瘤的转变过程中,纳米敏感多重分形性增加。
这种提取纳米敏感组织多重分形性的方法有望为早期疾病检测和监测治疗反应提供一种非侵入性的诊断工具。这种区分主导亚微米尺度纳米敏感多重分形特性的新能力也可能对描述各种非生物起源的复杂散射介质非常有用。