Department of Behavioural Science and Health, University College London, London, UK.
Fred Hutchinson Cancer Research Center, Seattle, WA.
Nicotine Tob Res. 2021 Jun 8;23(7):1103-1112. doi: 10.1093/ntr/ntab008.
Using WebQuit as a case study, a smoking cessation website grounded in Acceptance and Commitment Therapy, we aimed to identify sequence clusters of content usage and examine their associations with baseline characteristics, change to a key mechanism of action, and smoking cessation.
Participants were adult smokers allocated to the WebQuit arm in a randomized controlled trial (n = 1,313). WebQuit contains theory-informed content including goal setting, self-monitoring and feedback, and values- and acceptance-based exercises. Sequence analysis was used to temporally order 30-s website usage segments for each participant. Similarities between sequences were assessed with the optimal matching distance algorithm and used as input in an agglomerative hierarchical clustering analysis. Associations between sequence clusters and baseline characteristics, acceptance of cravings at 3 months and self-reported 30-day point prevalence abstinence at 12 months were examined with linear and logistic regression.
Three qualitatively different sequence clusters were identified. "Disengagers" (576/1,313) almost exclusively used the goal-setting feature. "Tryers" (375/1,313) used goal setting and two of the values- and acceptance-based components ("Be Aware," "Be Willing"). "Committers" (362/1,313) primarily used two of the values- and acceptance-based components ("Be Willing," "Be Inspired"), goal setting, and self-monitoring and feedback. Compared with Disengagers, Committers demonstrated greater increases in acceptance of cravings (p = .01) and 64% greater odds of quit success (ORadj = 1.64, 95% CI = 1.18, 2.29, p = .003).
WebQuit users were categorized into Disengagers, Tryers, and Committers based on their qualitatively different content usage patterns. Committers saw increases in a key mechanism of action and greater odds of quit success.
This case study demonstrates how employing sequence and cluster analysis of usage data can help researchers and practitioners gain a better understanding of how users engage with a given eHealth intervention over time and use findings to test theory and/or to improve future iterations to the intervention. Future WebQuit users may benefit from being directed to the values- and acceptance-based and the self-monitoring and feedback components via reminders over the course of the program.
本研究以 WebQuit 作为案例研究,这是一个基于接纳承诺疗法的戒烟网站,旨在确定内容使用的序列群集,并检查它们与基线特征、对关键作用机制的改变以及戒烟的关联。
本研究纳入了一项随机对照试验(n = 1,313)中被分配到 WebQuit 组的成年吸烟者。WebQuit 包含理论驱动的内容,包括目标设定、自我监测和反馈以及基于价值观和接纳的练习。使用序列分析对每个参与者的 30 秒网站使用片段进行时间排序。使用最佳匹配距离算法评估序列之间的相似性,并将其用作凝聚层次聚类分析的输入。使用线性和逻辑回归检查序列群集与基线特征、3 个月时对渴望的接受度以及 12 个月时自我报告的 30 天点流行率戒断之间的关联。
确定了三个定性不同的序列群集。“脱轨者”(576/1,313)几乎完全使用目标设定功能。“尝试者”(375/1,313)使用目标设定和两个基于价值观和接纳的组件(“Be Aware”和“Be Willing”)。“承诺者”(362/1,313)主要使用两个基于价值观和接纳的组件(“Be Willing”和“Be Inspired”)、目标设定以及自我监测和反馈。与脱轨者相比,承诺者对渴望的接受度增加(p =.01),戒烟成功率增加了 64%(调整后的 OR = 1.64,95%CI = 1.18, 2.29,p =.003)。
根据其定性不同的内容使用模式,WebQuit 用户分为脱轨者、尝试者和承诺者。承诺者对关键作用机制的接受度增加,戒烟成功率更高。
本案例研究表明,如何使用使用数据的序列和聚类分析可以帮助研究人员和从业者更好地了解用户随着时间的推移如何参与给定的电子健康干预,并利用研究结果检验理论和/或改进干预措施的未来迭代。未来的 WebQuit 用户可能会受益于通过程序中的提醒来引导他们使用基于价值观和接纳的组件以及自我监测和反馈组件。