Suppr超能文献

基于关系代理(Woebot)指导的 8 周数字心理健康干预的用户参与群:探索性研究。

User Engagement Clusters of an 8-Week Digital Mental Health Intervention Guided by a Relational Agent (Woebot): Exploratory Study.

机构信息

Woebot Health, Inc., San Francisco, CA, United States.

Rehabilitation Research & Development Service Center for Neurorestoration and Neurotechnology, Department of Veterans Affairs Providence Healthcare System, Providence, RI, United States.

出版信息

J Med Internet Res. 2023 Oct 13;25:e47198. doi: 10.2196/47198.

Abstract

BACKGROUND

With the proliferation of digital mental health interventions (DMHIs) guided by relational agents, little is known about the behavioral, cognitive, and affective engagement components associated with symptom improvement over time. Obtaining a better understanding could lend clues about recommended use for particular subgroups of the population, the potency of different intervention components, and the mechanisms underlying the intervention's success.

OBJECTIVE

This exploratory study applied clustering techniques to a range of engagement indicators, which were mapped to the intervention's active components and the connect, attend, participate, and enact (CAPE) model, to examine the prevalence and characterization of each identified cluster among users of a relational agent-guided DMHI.

METHODS

We invited adults aged 18 years or older who were interested in using digital support to help with mood management or stress reduction through social media to participate in an 8-week DMHI guided by a natural language processing-supported relational agent, Woebot. Users completed assessments of affective and cognitive engagement, working alliance as measured by goal and task working alliance subscale scores, and enactment (ie, application of therapeutic recommendations in real-world settings). The app passively collected data on behavioral engagement (ie, utilization). We applied agglomerative hierarchical clustering analysis to the engagement indicators to identify the number of clusters that provided the best fit to the data collected, characterized the clusters, and then examined associations with baseline demographic and clinical characteristics as well as mental health outcomes at week 8.

RESULTS

Exploratory analyses (n=202) supported 3 clusters: (1) "typical utilizers" (n=81, 40%), who had intermediate levels of behavioral engagement; (2) "early utilizers" (n=58, 29%), who had the nominally highest levels of behavioral engagement in week 1; and (3) "efficient engagers" (n=63, 31%), who had significantly higher levels of affective and cognitive engagement but the lowest level of behavioral engagement. With respect to mental health baseline and outcome measures, efficient engagers had significantly higher levels of baseline resilience (P<.001) and greater declines in depressive symptoms (P=.01) and stress (P=.01) from baseline to week 8 compared to typical utilizers. Significant differences across clusters were found by age, gender identity, race and ethnicity, sexual orientation, education, and insurance coverage. The main analytic findings remained robust in sensitivity analyses.

CONCLUSIONS

There were 3 distinct engagement clusters found, each with distinct baseline demographic and clinical traits and mental health outcomes. Additional research is needed to inform fine-grained recommendations regarding optimal engagement and to determine the best sequence of particular intervention components with known potency. The findings represent an important first step in disentangling the complex interplay between different affective, cognitive, and behavioral engagement indicators and outcomes associated with use of a DMHI incorporating a natural language processing-supported relational agent.

TRIAL REGISTRATION

ClinicalTrials.gov NCT05672745; https://classic.clinicaltrials.gov/ct2/show/NCT05672745.

摘要

背景

随着基于关系代理的数字心理健康干预(DMHI)的普及,人们对与症状随时间改善相关的行为、认知和情感参与成分知之甚少。更好地了解这些内容可以为特定人群的推荐使用提供线索,揭示不同干预成分的效力,并为干预成功的机制提供线索。

目的

本探索性研究应用聚类技术对一系列参与指标进行分析,这些指标与干预的主动成分和连接、关注、参与和实施(CAPE)模型相关联,以检查在使用基于自然语言处理的关系代理的 DMHI 中,每个识别出的群组在用户中的流行程度和特征。

方法

我们邀请年龄在 18 岁或以上、对使用社交媒体帮助管理情绪或减轻压力的数字支持感兴趣的成年人参加由自然语言处理支持的关系代理 Woebot 指导的为期 8 周的 DMHI。用户完成情感和认知参与、工作联盟(通过目标和任务工作联盟子量表得分衡量)以及实施(即,在现实世界环境中应用治疗建议)的评估。该应用程序被动收集行为参与(即利用)的数据。我们应用凝聚层次聚类分析对参与指标进行分析,以确定为数据提供最佳拟合的聚类数量,对聚类进行特征描述,然后检查与基线人口统计学和临床特征以及第 8 周心理健康结果的关联。

结果

探索性分析(n=202)支持 3 个聚类:(1)“典型使用者”(n=81,40%),他们的行为参与度处于中等水平;(2)“早期使用者”(n=58,29%),他们在第 1 周的行为参与度名义上最高;(3)“高效参与者”(n=63,31%),他们的情感和认知参与度显著较高,但行为参与度最低。就心理健康基线和结果衡量标准而言,高效参与者的基线复原力水平显著较高(P<.001),抑郁症状(P=.01)和压力(P=.01)从基线到第 8 周的下降幅度也显著更大。不同聚类之间存在显著差异,具体取决于年龄、性别认同、种族和民族、性取向、教育程度和保险覆盖范围。在敏感性分析中,主要分析结果仍然稳健。

结论

发现了 3 个不同的参与集群,每个集群都有不同的基线人口统计学和临床特征以及心理健康结果。需要进一步的研究来提供有关最佳参与的精细建议,并确定具有已知效力的特定干预成分的最佳顺序。这些发现代表了在解开与使用自然语言处理支持的关系代理的 DMHI 相关的不同情感、认知和行为参与指标和结果之间的复杂相互作用方面的重要的第一步。

试验注册

ClinicalTrials.gov NCT05672745;https://classic.clinicaltrials.gov/ct2/show/NCT05672745。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36dc/10612009/85aa8e182e0e/jmir_v25i1e47198_fig1.jpg

相似文献

5
Audit and feedback: effects on professional practice.
Cochrane Database Syst Rev. 2025 Mar 25;3(3):CD000259. doi: 10.1002/14651858.CD000259.pub4.
8
Digital interventions in mental health: evidence syntheses and economic modelling.
Health Technol Assess. 2022 Jan;26(1):1-182. doi: 10.3310/RCTI6942.

本文引用的文献

5
Evaluating the Therapeutic Alliance With a Free-Text CBT Conversational Agent (Wysa): A Mixed-Methods Study.
Front Digit Health. 2022 Apr 11;4:847991. doi: 10.3389/fdgth.2022.847991. eCollection 2022.
6
7
Factors associated with treatment uptake, completion, and subsequent symptom improvement in a national digital mental health service.
Internet Interv. 2022 Feb 12;27:100506. doi: 10.1016/j.invent.2022.100506. eCollection 2022 Mar.
8
Artificially intelligent chatbots in digital mental health interventions: a review.
Expert Rev Med Devices. 2021 Dec;18(sup1):37-49. doi: 10.1080/17434440.2021.2013200. Epub 2021 Dec 31.
9
The impact of the prolonged COVID-19 pandemic on stress resilience and mental health: A critical review across waves.
Eur Neuropsychopharmacol. 2022 Feb;55:22-83. doi: 10.1016/j.euroneuro.2021.10.864. Epub 2021 Oct 29.
10
Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic.
Lancet. 2021 Nov 6;398(10312):1700-1712. doi: 10.1016/S0140-6736(21)02143-7. Epub 2021 Oct 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验