Suppr超能文献

数字干预中分析和测量使用情况及参与度数据的框架(AMUsED):观点

A Framework for Analyzing and Measuring Usage and Engagement Data (AMUsED) in Digital Interventions: Viewpoint.

作者信息

Miller Sascha, Ainsworth Ben, Yardley Lucy, Milton Alex, Weal Mark, Smith Peter, Morrison Leanne

机构信息

Center for Clinical and Community Applications of Health Psychology, Department of Psychology, University of Southampton, Southampton, United Kingdom.

Department of Psychology, University of Bath, Bath, United Kingdom.

出版信息

J Med Internet Res. 2019 Feb 15;21(2):e10966. doi: 10.2196/10966.

Abstract

Trials of digital interventions can yield extensive, in-depth usage data, yet usage analyses tend to focus on broad descriptive summaries of how an intervention has been used by the whole sample. This paper proposes a novel framework to guide systematic, fine-grained usage analyses that better enables understanding of how an intervention works, when, and for whom. The framework comprises three stages to assist in the following: (1) familiarization with the intervention and its relationship to the captured data, (2) identification of meaningful measures of usage and specifying research questions to guide systematic analyses of usage data, and (3) preparation of datasheets and consideration of available analytical methods with which to examine the data. The framework can be applied to inform data capture during the development of a digital intervention and/or in the analysis of data after the completion of an evaluation trial. We will demonstrate how the framework shaped preparation and aided efficient data capture for a digital intervention to lower transmission of cold and flu viruses in the home, as well as how it informed a systematic, in-depth analysis of usage data collected from a separate digital intervention designed to promote self-management of colds and flu. The Analyzing and Measuring Usage and Engagement Data (AMUsED) framework guides systematic and efficient in-depth usage analyses that will support standardized reporting with transparent and replicable findings. These detailed findings may also enable examination of what constitutes effective engagement with particular interventions.

摘要

数字干预试验能够产生广泛、深入的使用数据,但使用情况分析往往侧重于对整个样本如何使用干预措施进行宽泛的描述性总结。本文提出了一个新颖的框架,以指导系统、细致的使用情况分析,从而更好地理解干预措施的作用方式、适用时间和适用对象。该框架包括三个阶段,以协助进行以下工作:(1)熟悉干预措施及其与所捕获数据的关系;(2)确定有意义的使用指标并明确研究问题,以指导对使用数据进行系统分析;(3)准备数据表并考虑可用的分析方法来检查数据。该框架可应用于在数字干预开发过程中为数据捕获提供参考,和/或在评估试验完成后对数据进行分析。我们将展示该框架如何为一项旨在降低家庭中感冒和流感病毒传播的数字干预措施的准备工作提供指导并有助于高效的数据捕获,以及它如何为对另一项旨在促进感冒和流感自我管理的数字干预措施收集的使用数据进行系统、深入的分析提供参考。分析和测量使用及参与数据(AMUsED)框架指导系统且高效的深入使用情况分析,这将支持以透明且可复制的结果进行标准化报告。这些详细结果还可能有助于考察与特定干预措施有效互动的构成要素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6f0/6396072/457deaa075e8/jmir_v21i2e10966_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验