Suppr超能文献

非晶态金属氧化物半导体薄膜、模拟忆阻器与神经形态系统的自主局部学习

Amorphous metal oxide semiconductor thin film, analog memristor, and autonomous local learning for neuromorphic systems.

作者信息

Kimura Mutsumi, Sumida Ryo, Kurasaki Ayata, Imai Takahito, Takishita Yuta, Nakashima Yasuhiko

机构信息

Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Takayama, Ikoma, 630-0192, Japan.

Graduate School of Science and Technology, Ryukoku University, Seta, Otsu, 520-2194, Japan.

出版信息

Sci Rep. 2021 Jan 12;11(1):580. doi: 10.1038/s41598-020-79806-w.

Abstract

Artificial intelligence is a promising concept in modern and future societies. Presently, software programs are used but with a bulky computer size and large power consumption. Conversely, hardware systems named neuromorphic systems are suggested, with a compact computer size and low power consumption. An important factor is the number of processing elements that can be integrated. In the present study, three decisive technologies are proposed: (1) amorphous metal oxide semiconductor thin films, one of which, Ga-Sn-O (GTO) thin film, is used. GTO thin film does not contain rare metals and can be deposited by a simple process at room temperature. Here, oxygen-poor and oxygen-rich layers are stacked. GTO memristors are formed at cross points in a crossbar array; (2) analog memristor, in which, continuous and infinite information can be memorized in a single device. Here, the electrical conductance gradually changes when a voltage is applied to the GTO memristor. This is the effect of the drift and diffusion of the oxygen vacancies (Vo); and (3) autonomous local learning, i.e., extra control circuits are not required since a single device autonomously modifies its own electrical characteristic. Finally, a neuromorphic system is assembled using the abovementioned three technologies. The function of the letter recognition is confirmed, which can be regarded as an associative memory, a typical artificial intelligence application.

摘要

人工智能在现代和未来社会中是一个很有前景的概念。目前,虽然使用了软件程序,但计算机体积庞大且功耗大。相反,有人提出了名为神经形态系统的硬件系统,其计算机体积紧凑且功耗低。一个重要因素是可集成的处理元件数量。在本研究中,提出了三项决定性技术:(1)非晶金属氧化物半导体薄膜,其中使用了一种Ga-Sn-O(GTO)薄膜。GTO薄膜不含稀有金属,可在室温下通过简单工艺沉积。这里,贫氧层和富氧层交替堆叠。GTO忆阻器在交叉阵列的交叉点处形成;(2)模拟忆阻器,其中,单个器件可存储连续且无限的信息。这里,当向GTO忆阻器施加电压时,其电导会逐渐变化。这是氧空位(Vo)漂移和扩散的结果;(3)自主局部学习,即由于单个器件可自主修改自身电气特性,因此不需要额外的控制电路。最后,利用上述三项技术组装了一个神经形态系统。确认了字母识别功能,这可被视为一种联想记忆,是典型的人工智能应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/334e/7804431/9cf1e0f10149/41598_2020_79806_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验