Suppr超能文献

一种基于忆阻器实现的用于图像去噪与识别的量化卷积神经网络。

A Quantized Convolutional Neural Network Implemented With Memristor for Image Denoising and Recognition.

作者信息

Zhang Yuejun, Wu Zhixin, Liu Shuzhi, Guo Zhecheng, Chen Qilai, Gao Pingqi, Wang Pengjun, Liu Gang

机构信息

Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, China.

Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Front Neurosci. 2021 Sep 16;15:717222. doi: 10.3389/fnins.2021.717222. eCollection 2021.

Abstract

The interference of noise will cause the degradation of image quality, which can have a negative impact on the subsequent image processing and visual effect. Although the existing image denoising algorithms are relatively perfect, their computational efficiency is restricted by the performance of the computer, and the computational process consumes a lot of energy. In this paper, we propose a method for image denoising and recognition based on multi-conductance states of memristor devices. By regulating the evolution of Pt/ZnO/Pt memristor wires, 26 continuous conductance states were obtained. The image feature preservation and noise reduction are realized the mapping between the conductance state and the image pixel. Furthermore, weight quantization of convolutional neural network is realized based on multi-conductance states. The simulation results show the feasibility of CNN for image denoising and recognition based on multi-conductance states. This method has a certain guiding significance for the construction of high-performance image noise reduction hardware system.

摘要

噪声干扰会导致图像质量下降,这会对后续的图像处理和视觉效果产生负面影响。尽管现有的图像去噪算法相对完善,但其计算效率受到计算机性能的限制,并且计算过程消耗大量能量。在本文中,我们提出了一种基于忆阻器器件多电导状态的图像去噪与识别方法。通过调节Pt/ZnO/Pt忆阻线的演化,获得了26个连续的电导状态。通过电导状态与图像像素之间的映射实现了图像特征保留和降噪。此外,基于多电导状态实现了卷积神经网络的权重量化。仿真结果表明了基于多电导状态的卷积神经网络用于图像去噪与识别的可行性。该方法对高性能图像降噪硬件系统的构建具有一定的指导意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b2a/8481819/009c716d3efd/fnins-15-717222-g001.jpg

相似文献

1
A Quantized Convolutional Neural Network Implemented With Memristor for Image Denoising and Recognition.
Front Neurosci. 2021 Sep 16;15:717222. doi: 10.3389/fnins.2021.717222. eCollection 2021.
2
Thousands of conductance levels in memristors integrated on CMOS.
Nature. 2023 Mar;615(7954):823-829. doi: 10.1038/s41586-023-05759-5. Epub 2023 Mar 29.
3
High-Linearity TaO Memristor and Its Application in Gaussian Convolution Image Denoising.
ACS Appl Mater Interfaces. 2024 Sep 11;16(36):47879-47888. doi: 10.1021/acsami.4c09056. Epub 2024 Aug 27.
4
Unpaired low-dose computed tomography image denoising using a progressive cyclical convolutional neural network.
Med Phys. 2024 Feb;51(2):1289-1312. doi: 10.1002/mp.16331. Epub 2023 Mar 10.
6
Multi-Scale Feature Learning Convolutional Neural Network for Image Denoising.
Sensors (Basel). 2023 Sep 6;23(18):7713. doi: 10.3390/s23187713.
7
Fully hardware-implemented memristor convolutional neural network.
Nature. 2020 Jan;577(7792):641-646. doi: 10.1038/s41586-020-1942-4. Epub 2020 Jan 29.
8
Dual-domain fusion deep convolutional neural network for low-dose CT denoising.
J Xray Sci Technol. 2023;31(4):757-775. doi: 10.3233/XST-230020.
9
Memristor Based Binary Convolutional Neural Network Architecture With Configurable Neurons.
Front Neurosci. 2021 Mar 26;15:639526. doi: 10.3389/fnins.2021.639526. eCollection 2021.
10
High-field mr diffusion-weighted image denoising using a joint denoising convolutional neural network.
J Magn Reson Imaging. 2019 Dec;50(6):1937-1947. doi: 10.1002/jmri.26761. Epub 2019 Apr 22.

引用本文的文献

1
Study of Weight Quantization Associations over a Weight Range for Application in Memristor Devices.
Micromachines (Basel). 2024 Oct 15;15(10):1258. doi: 10.3390/mi15101258.
2
Pruning and quantization algorithm with applications in memristor-based convolutional neural network.
Cogn Neurodyn. 2024 Feb;18(1):233-245. doi: 10.1007/s11571-022-09927-7. Epub 2023 Jan 19.
3
Organic Memristor with Synaptic Plasticity for Neuromorphic Computing Applications.
Nanomaterials (Basel). 2023 Feb 22;13(5):803. doi: 10.3390/nano13050803.
4
Reservoir Computing-Based Design of ZnO Memristor-Type Digital Identification Circuits.
Micromachines (Basel). 2022 Oct 10;13(10):1700. doi: 10.3390/mi13101700.

本文引用的文献

1
Hybrid memristor-CMOS neurons for in-situ learning in fully hardware memristive spiking neural networks.
Sci Bull (Beijing). 2021 Aug 30;66(16):1624-1633. doi: 10.1016/j.scib.2021.04.014. Epub 2021 Apr 17.
3
Imagined character recognition through EEG signals using deep convolutional neural network.
Med Biol Eng Comput. 2021 May;59(5):1167-1183. doi: 10.1007/s11517-021-02368-0. Epub 2021 May 4.
4
A Shallow Convolutional Neural Network Predicts Prognosis of Lung Cancer Patients in Multi-Institutional CT-Image Data.
Nat Mach Intell. 2020 May;2(5):274-282. doi: 10.1038/s42256-020-0173-6. Epub 2020 May 18.
6
Deep-neural-network solution of the electronic Schrödinger equation.
Nat Chem. 2020 Oct;12(10):891-897. doi: 10.1038/s41557-020-0544-y. Epub 2020 Sep 23.
7
Deep learning on image denoising: An overview.
Neural Netw. 2020 Nov;131:251-275. doi: 10.1016/j.neunet.2020.07.025. Epub 2020 Aug 6.
8
Generalized Convolutional Sparse Coding with Unknown Noise.
IEEE Trans Image Process. 2020 Mar 27. doi: 10.1109/TIP.2020.2980980.
9
Fully hardware-implemented memristor convolutional neural network.
Nature. 2020 Jan;577(7792):641-646. doi: 10.1038/s41586-020-1942-4. Epub 2020 Jan 29.
10
Attention-guided CNN for image denoising.
Neural Netw. 2020 Apr;124:117-129. doi: 10.1016/j.neunet.2019.12.024. Epub 2020 Jan 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验