Department of Life Science and Institute of Biological Interfaces, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, 04107, Korea.
Research Center for Endangered Species, National Institute of Ecology, 23, Gowol-gil, Yeongyang-eup, Yeongyang-gun, 36531, Gyeongsangbuk-do, Korea.
Sci Rep. 2021 Jan 13;11(1):854. doi: 10.1038/s41598-020-72125-0.
Microbial rhodopsins are distributed through many microorganisms. Heliorhodopsins are newly discovered but have an unclear function. They have seven transmembrane helices similar to type-I and type-II rhodopsins, but they are different in that the N-terminal region of heliorhodopsin is cytoplasmic. We chose 13 representative heliorhodopsins from various microorganisms, expressed and purified with an N-terminal His tag, and measured the absorption spectra. The 13 natural variants had an absorption maximum (λmax) in the range 530-556 nm similar to proteorhodopsin (λmax = 490-525 nm). We selected several candidate residues that influence rhodopsin color-tuning based on sequence alignment and constructed mutants via site-directed mutagenesis to confirm the spectral changes. We found two important residues located near retinal chromophore that influence λmax. We also predict the 3D structure via homology-modeling of Thermoplasmatales heliorhodopsin. The results indicate that the color-tuning mechanism of type-I rhodopsin can be applied to understand the color-tuning of heliorhodopsin.
微生物视紫红质分布于许多微生物中。海洋盐杆菌视紫红质是新发现的,但功能尚不清楚。它们具有与 I 型和 II 型视紫红质相似的七个跨膜螺旋,但不同的是,海洋盐杆菌视紫红质的 N 端区域位于细胞质中。我们从各种微生物中选择了 13 种具有代表性的海洋盐杆菌视紫红质,用 N 端 His 标签进行表达和纯化,并测量了吸收光谱。这 13 种天然变体的吸收最大值 (λmax) 在 530-556nm 范围内,与保护视紫红质 (λmax = 490-525nm) 相似。我们根据序列比对选择了几个影响视紫红质颜色调谐的候选残基,并通过定点突变构建了突变体以确认光谱变化。我们发现了两个位于视黄醛发色团附近的重要残基,它们影响 λmax。我们还通过同源建模预测了嗜热菌海洋盐杆菌视紫红质的 3D 结构。结果表明,I 型视紫红质的颜色调谐机制可用于理解海洋盐杆菌视紫红质的颜色调谐。