Suppr超能文献

使用 POP-seq 进行全转录组高通量蛋白质-RNA 占据谱图绘制。

Transcriptome-wide high-throughput mapping of protein-RNA occupancy profiles using POP-seq.

机构信息

Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University, Informatics and Communications Technology Complex, IT475H, 535 West Michigan Street, Indianapolis, IN, 46202, USA.

Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 5021 Health Information and Translational Sciences (HITS), 410 West 10th Street, Indianapolis, IN, 46202, USA.

出版信息

Sci Rep. 2021 Jan 13;11(1):1175. doi: 10.1038/s41598-020-80846-5.

Abstract

Interaction between proteins and RNA is critical for post-transcriptional regulatory processes. Existing high throughput methods based on crosslinking of the protein-RNA complexes and poly-A pull down are reported to contribute to biases and are not readily amenable for identifying interaction sites on non poly-A RNAs. We present Protein Occupancy Profile-Sequencing (POP-seq), a phase separation based method in three versions, one of which does not require crosslinking, thus providing unbiased protein occupancy profiles on whole cell transcriptome without the requirement of poly-A pulldown. Our study demonstrates that ~ 68% of the total POP-seq peaks exhibited an overlap with publicly available protein-RNA interaction profiles of 97 RNA binding proteins (RBPs) in K562 cells. We show that POP-seq variants consistently capture protein-RNA interaction sites across a broad range of genes including on transcripts encoding for transcription factors (TFs), RNA-Binding Proteins (RBPs) and long non-coding RNAs (lncRNAs). POP-seq identified peaks exhibited a significant enrichment (p value < 2.2e-16) for GWAS SNPs, phenotypic, clinically relevant germline as well as somatic variants reported in cancer genomes, suggesting the prevalence of uncharacterized genomic variation in protein occupied sites on RNA. We demonstrate that the abundance of POP-seq peaks increases with an increase in expression of lncRNAs, suggesting that highly expressed lncRNA are likely to act as sponges for RBPs, contributing to the rewiring of protein-RNA interaction network in cancer cells. Overall, our data supports POP-seq as a robust and cost-effective method that could be applied to primary tissues for mapping global protein occupancies.

摘要

蛋白质与 RNA 的相互作用对于转录后调控过程至关重要。现有的基于蛋白质-RNA 复合物交联和 poly-A 下拉的高通量方法据报道存在偏差,并且不易用于识别非 poly-A RNA 上的相互作用位点。我们提出了基于相分离的蛋白质占有谱测序(POP-seq)方法,该方法有三个版本,其中一个版本不需要交联,因此可以在不进行 poly-A 下拉的情况下,提供整个细胞转录组的无偏蛋白质占有谱。我们的研究表明,在 K562 细胞中,97 种 RNA 结合蛋白(RBP)的公开可用蛋白质-RNA 相互作用谱中,约 68%的总 POP-seq 峰与已知的蛋白质-RNA 相互作用谱重叠。我们表明,POP-seq 变体在广泛的基因中一致地捕获蛋白质-RNA 相互作用位点,包括转录因子(TFs)、RNA 结合蛋白(RBPs)和长非编码 RNA(lncRNA)的转录本。POP-seq 鉴定的峰在 GWAS SNPs、表型、临床上相关的种系以及癌症基因组中报道的体细胞变异中表现出显著富集(p 值 < 2.2e-16),这表明 RNA 上未被表征的基因组变异在蛋白质占有位点很普遍。我们表明,POP-seq 峰的丰度随着 lncRNA 表达的增加而增加,这表明高表达的 lncRNA可能作为 RBPs 的海绵,有助于癌细胞中蛋白质-RNA 相互作用网络的重布线。总体而言,我们的数据支持 POP-seq 是一种稳健且具有成本效益的方法,可应用于原发性组织以绘制全局蛋白质占有图谱。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/624b/7806670/3973aaf519de/41598_2020_80846_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验