Suppr超能文献

基于贝叶斯网络利用RNA测序预测长链非编码RNA的功能

Predicting the functions of long noncoding RNAs using RNA-seq based on Bayesian network.

作者信息

Xiao Yun, Lv Yanling, Zhao Hongying, Gong Yonghui, Hu Jing, Li Feng, Xu Jinyuan, Bai Jing, Yu Fulong, Li Xia

机构信息

College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China ; Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang 150086, China.

College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China.

出版信息

Biomed Res Int. 2015;2015:839590. doi: 10.1155/2015/839590. Epub 2015 Feb 28.

Abstract

Long noncoding RNAs (lncRNAs) have been shown to play key roles in various biological processes. However, functions of most lncRNAs are poorly characterized. Here, we represent a framework to predict functions of lncRNAs through construction of a regulatory network between lncRNAs and protein-coding genes. Using RNA-seq data, the transcript profiles of lncRNAs and protein-coding genes are constructed. Using the Bayesian network method, a regulatory network, which implies dependency relations between lncRNAs and protein-coding genes, was built. In combining protein interaction network, highly connected coding genes linked by a given lncRNA were subsequently used to predict functions of the lncRNA through functional enrichment. Application of our method to prostate RNA-seq data showed that 762 lncRNAs in the constructed regulatory network were assigned functions. We found that lncRNAs are involved in diverse biological processes, such as tissue development or embryo development (e.g., nervous system development and mesoderm development). By comparison with functions inferred using the neighboring gene-based method and functions determined using lncRNA knockdown experiments, our method can provide comparable predicted functions of lncRNAs. Overall, our method can be applied to emerging RNA-seq data, which will help researchers identify complex relations between lncRNAs and coding genes and reveal important functions of lncRNAs.

摘要

长链非编码RNA(lncRNAs)已被证明在各种生物过程中发挥关键作用。然而,大多数lncRNAs的功能仍未得到充分表征。在此,我们提出了一个通过构建lncRNAs与蛋白质编码基因之间的调控网络来预测lncRNAs功能的框架。利用RNA测序数据构建lncRNAs和蛋白质编码基因的转录图谱。使用贝叶斯网络方法构建一个调控网络,该网络暗示了lncRNAs与蛋白质编码基因之间的依赖关系。结合蛋白质相互作用网络,随后通过功能富集,利用由给定lncRNA连接的高度连接的编码基因来预测lncRNA的功能。将我们的方法应用于前列腺RNA测序数据表明,构建的调控网络中的762个lncRNAs被赋予了功能。我们发现lncRNAs参与多种生物过程,如组织发育或胚胎发育(如神经系统发育和中胚层发育)。通过与使用基于邻近基因的方法推断的功能以及使用lncRNA敲低实验确定的功能进行比较,我们的方法可以提供lncRNAs的可比预测功能。总体而言,我们的方法可应用于新出现的RNA测序数据,这将有助于研究人员识别lncRNAs与编码基因之间的复杂关系,并揭示lncRNAs的重要功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b66a/4359839/384dca85ce51/BMRI2015-839590.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验