Suppr超能文献

基于不同腰部佩戴传感器位置的稳健步数检测:对临床研究的启示

Robust Step Detection from Different Waist-Worn Sensor Positions: Implications for Clinical Studies.

作者信息

Tietsch Matthias, Muaremi Amir, Clay Ieuan, Kluge Felix, Hoefling Holger, Ullrich Martin, Küderle Arne, Eskofier Bjoern M, Müller Arne

机构信息

Novartis Institutes of Biomedical Research, Novartis Pharma AG, Basel, Switzerland.

Machine Learning and Data Analytics Lab, Department of Computer Science, Friedrich-Alexander University Erlangen-Nürnberg, Nürnberg, Germany.

出版信息

Digit Biomark. 2020 Nov 26;4(Suppl 1):50-58. doi: 10.1159/000511611. eCollection 2020 Winter.

Abstract

Analyzing human gait with inertial sensors provides valuable insights into a wide range of health impairments, including many musculoskeletal and neurological diseases. A representative and reliable assessment of gait requires continuous monitoring over long periods and ideally takes place in the subjects' habitual environment (real-world). An inconsistent sensor wearing position can affect gait characterization and influence clinical study results, thus clinical study protocols are typically highly proscriptive, instructing all participants to wear the sensor in a uniform manner. This restrictive approach improves data quality but reduces overall adherence. In this work, we analyze the impact of altering the sensor wearing position around the waist on sensor signal and step detection. We demonstrate that an asymmetrically worn sensor leads to additional odd-harmonic frequency components in the frequency spectrum. We propose a robust solution for step detection based on autocorrelation to overcome sensor position variation (sensitivity = 0.99, precision = 0.99). The proposed solution reduces the impact of inconsistent sensor positioning on gait characterization in clinical studies, thus providing more flexibility to protocol implementation and more freedom to participants to wear the sensor in the position most comfortable to them. This work is a first step towards truly position-agnostic gait assessment in clinical settings.

摘要

使用惯性传感器分析人类步态能为包括许多肌肉骨骼和神经疾病在内的广泛健康损伤提供有价值的见解。对步态进行具有代表性和可靠性的评估需要长时间的持续监测,理想情况下应在受试者的习惯环境(现实世界)中进行。传感器佩戴位置不一致会影响步态特征描述并影响临床研究结果,因此临床研究方案通常规定性很强,要求所有参与者以统一方式佩戴传感器。这种严格的方法提高了数据质量,但降低了总体依从性。在这项工作中,我们分析了在腰部周围改变传感器佩戴位置对传感器信号和步长检测的影响。我们证明,不对称佩戴的传感器会在频谱中导致额外的奇次谐波频率成分。我们提出了一种基于自相关的稳健步长检测解决方案,以克服传感器位置变化(灵敏度 = 0.99,精度 = 0.99)。所提出的解决方案减少了临床研究中传感器位置不一致对步态特征描述的影响,从而为方案实施提供了更大的灵活性,并给予参与者更大的自由,使其能够在最舒适的位置佩戴传感器。这项工作是迈向临床环境中真正与位置无关的步态评估的第一步。

相似文献

3
Detection of Gait From Continuous Inertial Sensor Data Using Harmonic Frequencies.基于谐波频率的连续惯性传感器数据的步态检测。
IEEE J Biomed Health Inform. 2020 Jul;24(7):1869-1878. doi: 10.1109/JBHI.2020.2975361. Epub 2020 Feb 20.

引用本文的文献

7
The Future of Digital Health: Meeting Report.数字健康的未来:会议报告
Digit Biomark. 2021 Apr 16;5(1):74-77. doi: 10.1159/000515355. eCollection 2021 Jan-Apr.

本文引用的文献

2
Detection of Gait From Continuous Inertial Sensor Data Using Harmonic Frequencies.基于谐波频率的连续惯性传感器数据的步态检测。
IEEE J Biomed Health Inform. 2020 Jul;24(7):1869-1878. doi: 10.1109/JBHI.2020.2975361. Epub 2020 Feb 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验