Brook Cara E, Northrup Graham R, Ehrenberg Alexander J, Doudna Jennifer A, Boots Mike
Department of Integrative Biology, University of California, Berkeley.
Department of Ecology and Evolution, University of Chicago.
medRxiv. 2021 Oct 27:2020.11.12.20230870. doi: 10.1101/2020.11.12.20230870.
The high proportion of transmission events derived from asymptomatic or presymptomatic infections make SARS-CoV-2, the causative agent in COVID-19, difficult to control through the traditional non-pharmaceutical interventions (NPIs) of symptom-based isolation and contact tracing. As a consequence, many US universities developed asymptomatic surveillance testing labs, to augment NPIs and control outbreaks on campus throughout the 2020-2021 academic year (AY); several of those labs continue to support asymptomatic surveillance efforts on campus in AY2021-2022. At the height of the pandemic, we built a stochastic branching process model of COVID-19 dynamics at UC Berkeley to advise optimal control strategies in a university environment. Our model combines behavioral interventions in the form of group size limits to deter superspreading, symptom-based isolation, and contact tracing, with asymptomatic surveillance testing. We found that behavioral interventions offer a cost-effective means of epidemic control: group size limits of six or fewer greatly reduce superspreading, and rapid isolation of symptomatic infections can halt rising epidemics, depending on the frequency of asymptomatic transmission in the population. Surveillance testing can overcome uncertainty surrounding asymptomatic infections, with the most effective approaches prioritizing frequent testing with rapid turnaround time to isolation over test sensitivity. Importantly, contact tracing amplifies population-level impacts of all infection isolations, making even delayed interventions effective. Combination of behavior-based NPIs and asymptomatic surveillance also reduces variation in daily case counts to produce more predictable epidemics. Furthermore, targeted, intensive testing of a minority of high transmission risk individuals can effectively control the COVID-19 epidemic for the surrounding population. Even in some highly vaccinated university settings in AY2021-2022, asymptomatic surveillance testing offers an effective means of identifying breakthrough infections, halting onward transmission, and reducing total caseload. We offer this blueprint and easy-to-implement modeling tool to other academic or professional communities navigating optimal return-to-work strategies.
由无症状或症状前感染导致的传播事件比例很高,这使得2019冠状病毒病的病原体严重急性呼吸综合征冠状病毒2(SARS-CoV-2)难以通过基于症状的隔离和接触者追踪等传统非药物干预措施(NPIs)加以控制。因此,许多美国大学设立了无症状监测检测实验室,以加强非药物干预措施,并在整个2020 - 2021学年(AY)控制校园疫情;其中一些实验室在2021 - 2022学年继续支持校园内的无症状监测工作。在疫情最严重的时候,我们建立了加州大学伯克利分校新冠疫情动态的随机分支过程模型,为大学环境中的最佳控制策略提供建议。我们的模型将以限制群体规模形式的行为干预(以阻止超级传播)、基于症状的隔离和接触者追踪与无症状监测检测结合起来。我们发现,行为干预提供了一种具有成本效益的疫情控制手段:将群体规模限制在六人或更少可大大减少超级传播,对有症状感染的快速隔离可以阻止疫情上升,这取决于人群中无症状传播的频率。监测检测可以克服无症状感染带来的不确定性,最有效的方法是优先进行检测周转时间短的频繁检测,而不是检测敏感性。重要的是,接触者追踪放大了所有感染隔离在人群层面的影响,使得即使是延迟干预也有效。基于行为的非药物干预措施和无症状监测的结合还减少了每日病例数的波动,从而产生更可预测的疫情。此外,对少数高传播风险个体进行有针对性的密集检测,可以有效控制周围人群的新冠疫情。即使在2021 - 2022学年一些疫苗接种率很高的大学环境中,无症状监测检测也是识别突破性感染、阻止病毒进一步传播和减少总病例数的有效手段。我们为其他正在探索最佳复工策略的学术或专业团体提供这个蓝图和易于实施的建模工具。