Suppr超能文献

微流变学揭示了浮游生物系统中的微观粘度梯度。

Microrheology reveals microscale viscosity gradients in planktonic systems.

机构信息

Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, LN6 7DL Lincoln, United Kingdom;

Optics and Photonics Research Group, Department of Electrical and Electronic Engineering, University of Nottingham, NG7 2RD Nottingham, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2021 Jan 5;118(1). doi: 10.1073/pnas.2011389118.

Abstract

Microbial activity in planktonic systems creates a dynamic and heterogeneous microscale seascape that harbors a diverse community of microorganisms and ecological interactions of global significance. In recent decades great effort has been put into understanding this complex system, particularly focusing on the role of chemical patchiness, while overlooking a physical parameter that governs microbial life and is affected by biological activity: viscosity. Here we reveal spatial heterogeneity of viscosity in planktonic systems by using microrheological techniques that allow measurement of viscosity at length scales relevant to microorganisms. We show the viscous nature and the spatial extent of the phycosphere, the region surrounding phytoplankton. In ∼45% of the phytoplankton cells analyzed we detected increases in viscosity that extended up to 30 µm away from the cell with up to 40 times the viscosity of seawater. We also show how these gradients of viscosity can be amplified around a lysing phytoplankton cell as its viscous contents leak away. Finally, we report conservative estimates of viscosity inside marine aggregates, hotspots of microbial activity, more than an order of magnitude higher than in seawater. Since the diffusivities of dissolved molecules, particles, and microorganisms are inversely related to viscosity, microheterogeneity in viscosity alters the microscale distribution of microorganisms and their resources, with pervasive implications for the functioning of the planktonic ecosystem. Increasing viscosities impacts ecological interactions and processes, such as nutrient uptake, chemotaxis, and particle encounter, that occur at the microscale but influence carbon and nutrient cycles at a global scale.

摘要

浮游生物系统中的微生物活动创造了一个动态且不均匀的微观景观,其中蕴藏着多样的微生物群落和具有全球意义的生态相互作用。在过去的几十年中,人们投入了大量精力来理解这个复杂的系统,特别是关注化学斑块性的作用,而忽略了一个控制微生物生命并受生物活性影响的物理参数:粘度。在这里,我们通过使用微流变技术来揭示浮游生物系统中粘度的空间异质性,该技术允许在与微生物相关的长度尺度上测量粘度。我们展示了浮游生物周围的菌胶团的粘性性质和空间范围。在所分析的大约 45%的浮游植物细胞中,我们检测到粘度增加,其延伸范围可达离细胞 30 µm 远的距离,粘度可达海水的 40 倍。我们还展示了当一个正在裂解的浮游植物细胞的粘性物质泄漏时,这些粘度梯度是如何在其周围放大的。最后,我们报告了海洋聚集体(微生物活动的热点)内部的粘度保守估计值,其值比海水中高一个数量级以上。由于溶解分子、颗粒和微生物的扩散系数与粘度成反比,因此粘度的微观异质性改变了微生物及其资源的微观分布,对浮游生态系统的功能产生了普遍影响。增加的粘度会影响生态相互作用和过程,如营养吸收、趋化性和颗粒碰撞,这些过程发生在微观尺度上,但会影响全球碳和营养循环。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdcc/7817219/68051173bf79/pnas.2011389118fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验