Suppr超能文献

基于 CBCT 图像的 U-Net 进行精细化牙及牙髓分割。

Refined tooth and pulp segmentation using U-Net in CBCT image.

机构信息

College of Electronics and Information Engineering, Tongji University, Shanghai 201804, China.

Department of Endodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China.

出版信息

Dentomaxillofac Radiol. 2021 Sep 1;50(6):20200251. doi: 10.1259/dmfr.20200251. Epub 2021 Jan 15.

Abstract

OBJECTIVES

The aim of this study was extracting any single tooth from a CBCT scan and performing tooth and pulp cavity segmentation to visualize and to have knowledge of internal anatomy relationships before undertaking endodontic therapy.

METHODS

We propose a two-phase deep learning solution for accurate tooth and pulp cavity segmentation. First, the single tooth bounding box is extracted automatically for both single-rooted tooth (ST) and multirooted tooth (MT). It is achieved by using the Region Proposal Network (RPN) with Feature Pyramid Network (FPN) method from the perspective of panorama. Second, U-Net model is iteratively performed for refined tooth and pulp segmentation against two types of tooth ST and MT, respectively. In light of rough data and annotation problems for dental pulp, we design a loss function with a smoothness penalty in the network. Furthermore, the multi-view data enhancement is proposed to solve the small data challenge and morphology structural problems.

RESULTS

The experimental results show that the proposed method can obtain an average dice 95.7% for ST, 96.2% for MT and 88.6% for pulp of ST, 87.6% for pulp of MT.

CONCLUSIONS

This study proposed a two-phase deep learning solution for fast and accurately extracting any single tooth from a CBCT scan and performing accurate tooth and pulp cavity segmentation. The 3D reconstruction results can completely show the morphology of teeth and pulps, it also provides valuable data for further research and clinical practice.

摘要

目的

本研究旨在从 CBCT 扫描中提取单个牙齿,并进行牙齿和牙髓腔分割,以便在进行牙髓治疗之前可视化和了解内部解剖关系。

方法

我们提出了一种两阶段深度学习解决方案,用于准确的牙齿和牙髓腔分割。首先,从全景角度使用区域提议网络 (RPN) 和特征金字塔网络 (FPN) 方法自动提取单根牙 (ST) 和多根牙 (MT) 的单个牙齿边界框。其次,针对 ST 和 MT 两种类型的牙齿,迭代执行 U-Net 模型进行精细的牙齿和牙髓分割。鉴于牙髓的粗略数据和注释问题,我们在网络中设计了具有平滑惩罚的损失函数。此外,提出了多视图数据增强方法来解决小数据挑战和形态结构问题。

结果

实验结果表明,所提出的方法可以分别获得 ST 的平均骰子 95.7%、MT 的 96.2%和 ST 牙髓的 88.6%、MT 牙髓的 87.6%。

结论

本研究提出了一种两阶段深度学习解决方案,用于快速准确地从 CBCT 扫描中提取任何单个牙齿,并进行准确的牙齿和牙髓腔分割。三维重建结果可以完全显示牙齿和牙髓的形态,为进一步的研究和临床实践提供了有价值的数据。

相似文献

1
Refined tooth and pulp segmentation using U-Net in CBCT image.基于 CBCT 图像的 U-Net 进行精细化牙及牙髓分割。
Dentomaxillofac Radiol. 2021 Sep 1;50(6):20200251. doi: 10.1259/dmfr.20200251. Epub 2021 Jan 15.
4
CBCT image based segmentation method for tooth pulp cavity region extraction.基于 CBCT 图像的牙髓腔区域提取的分割方法。
Dentomaxillofac Radiol. 2019 Feb;48(2):20180236. doi: 10.1259/dmfr.20180236. Epub 2018 Oct 11.

引用本文的文献

本文引用的文献

1
UNet++: A Nested U-Net Architecture for Medical Image Segmentation.U-Net++:一种用于医学图像分割的嵌套U-Net架构。
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018 Sep;11045:3-11. doi: 10.1007/978-3-030-00889-5_1. Epub 2018 Sep 20.
3
Caries Detection with Near-Infrared Transillumination Using Deep Learning.基于深度学习的近红外光透射龋病检测。
J Dent Res. 2019 Oct;98(11):1227-1233. doi: 10.1177/0022034519871884. Epub 2019 Aug 26.
7
CBCT image based segmentation method for tooth pulp cavity region extraction.基于 CBCT 图像的牙髓腔区域提取的分割方法。
Dentomaxillofac Radiol. 2019 Feb;48(2):20180236. doi: 10.1259/dmfr.20180236. Epub 2018 Oct 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验