Suppr超能文献

一种用于小视野 CT 成像的金属伪影降低方法。

A metal artifact reduction method for small field of view CT imaging.

机构信息

School of Integrated Technology and Yonsei Institute of Convergence Technology, Yonsei University, Yeonsu-gu, Incheon, South Korea.

出版信息

PLoS One. 2021 Jan 14;16(1):e0227656. doi: 10.1371/journal.pone.0227656. eCollection 2021.

Abstract

Several sinogram inpainting based metal artifact reduction (MAR) methods have been proposed to reduce metal artifact in CT imaging. The sinogram inpainting method treats metal trace regions as missing data and estimates the missing information. However, a general assumption with these methods is that data truncation does not occur and that all metal objects still reside within the field-of-view (FOV). These assumptions are usually violated when the FOV is smaller than the object. Thus, existing inpainting based MAR methods are not effective. In this paper, we propose a new MAR method to effectively reduce metal artifact in the presence of data truncation. The main principle of the proposed method involves using a newly synthesized sinogram instead of the originally measured sinogram. The initial reconstruction step involves obtaining a small FOV image with the truncation artifact removed. The final step is to conduct sinogram inpainting based MAR methods, i.e., linear and normalized MAR methods, on the synthesized sinogram from the previous step. The proposed method was verified for extended cardiac-torso simulations, clinical data, and experimental data, and its performance was quantitatively compared with those of previous methods (i.e., linear and normalized MAR methods directly applied to the originally measured sinogram data). The effectiveness of the proposed method was further demonstrated by reducing the residual metal artifact that were present in the reconstructed images obtained using the previous method.

摘要

已经提出了几种基于正弦图补全的金属伪影减少(MAR)方法来减少 CT 成像中的金属伪影。正弦图补全方法将金属痕迹区域视为缺失数据,并估计缺失信息。然而,这些方法的一个普遍假设是数据截断不会发生,并且所有金属物体仍然位于视野(FOV)内。当 FOV 小于物体时,这些假设通常会被违反。因此,现有的基于补全的 MAR 方法并不有效。在本文中,我们提出了一种新的 MAR 方法,以在存在数据截断的情况下有效减少金属伪影。该方法的主要原理涉及使用新合成的正弦图代替原始测量的正弦图。初始重建步骤涉及获得具有截断伪影去除的小 FOV 图像。最后一步是在前一步骤中对合成的正弦图进行基于补全的 MAR 方法,即线性和归一化 MAR 方法。该方法已在扩展心脏-胸部模拟、临床数据和实验数据中进行了验证,并与之前的方法(即直接应用于原始测量的正弦图数据的线性和归一化 MAR 方法)进行了定量比较。通过减少先前方法获得的重建图像中存在的残留金属伪影,进一步证明了该方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5043/7808647/922e9eb8a10f/pone.0227656.g001.jpg

相似文献

1
A metal artifact reduction method for small field of view CT imaging.
PLoS One. 2021 Jan 14;16(1):e0227656. doi: 10.1371/journal.pone.0227656. eCollection 2021.
2
Gaussian diffusion sinogram inpainting for X-ray CT metal artifact reduction.
Biomed Eng Online. 2017 Jan 5;16(1):1. doi: 10.1186/s12938-016-0292-9.
3
An irregular metal trace inpainting network for x-ray CT metal artifact reduction.
Med Phys. 2020 Sep;47(9):4087-4100. doi: 10.1002/mp.14295. Epub 2020 Jun 23.
4
An Image-Based Reduction of Metal Artifacts in Computed Tomography.
J Comput Assist Tomogr. 2016 Jan-Feb;40(1):131-41. doi: 10.1097/RCT.0000000000000316.
6
Metal artifact reduction in CT using fusion based prior image.
Med Phys. 2013 Aug;40(8):081903. doi: 10.1118/1.4812424.
7
Physics-informed sinogram completion for metal artifact reduction in CT imaging.
Phys Med Biol. 2023 Mar 13;68(6). doi: 10.1088/1361-6560/acbddf.
8
Frequency split metal artifact reduction (FSMAR) in computed tomography.
Med Phys. 2012 Apr;39(4):1904-16. doi: 10.1118/1.3691902.
9
Metal artifact reduction in 2D CT images with self-supervised cross-domain learning.
Phys Med Biol. 2021 Aug 23;66(17). doi: 10.1088/1361-6560/ac195c.
10
A metal artifact reduction algorithm in CT using multiple prior images by recursive active contour segmentation.
PLoS One. 2017 Jun 12;12(6):e0179022. doi: 10.1371/journal.pone.0179022. eCollection 2017.

引用本文的文献

本文引用的文献

1
Convolutional Neural Network Based Metal Artifact Reduction in X-Ray Computed Tomography.
IEEE Trans Med Imaging. 2018 Jun;37(6):1370-1381. doi: 10.1109/TMI.2018.2823083.
2
A metal artifact reduction algorithm in CT using multiple prior images by recursive active contour segmentation.
PLoS One. 2017 Jun 12;12(6):e0179022. doi: 10.1371/journal.pone.0179022. eCollection 2017.
3
Modeling and Pre-Treatment of Photon-Starved CT Data for Iterative Reconstruction.
IEEE Trans Med Imaging. 2017 Jan;36(1):277-287. doi: 10.1109/TMI.2016.2606338. Epub 2016 Sep 7.
4
Metal Artifact Reduction for Polychromatic X-ray CT Based on a Beam-Hardening Corrector.
IEEE Trans Med Imaging. 2016 Feb;35(2):480-7. doi: 10.1109/TMI.2015.2478905. Epub 2015 Sep 15.
5
Reduction of metal artifact in single photon-counting computed tomography by spectral-driven iterative reconstruction technique.
PLoS One. 2015 May 8;10(5):e0124831. doi: 10.1371/journal.pone.0124831. eCollection 2015.
6
Sparsity driven metal part reconstruction for artifact removal in dental CT.
J Xray Sci Technol. 2011;19(4):457-75. doi: 10.3233/XST-2011-0307.
8
Evaluation of two iterative techniques for reducing metal artifacts in computed tomography.
Radiology. 2011 Jun;259(3):894-902. doi: 10.1148/radiol.11101782. Epub 2011 Feb 25.
9
Normalized metal artifact reduction (NMAR) in computed tomography.
Med Phys. 2010 Oct;37(10):5482-93. doi: 10.1118/1.3484090.
10
Empirical beam hardening correction (EBHC) for CT.
Med Phys. 2010 Oct;37(10):5179-87. doi: 10.1118/1.3477088.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验