Suppr超能文献

如何通过整合环境数据来提高传染病预测:一种应用于预测手足口病的新型集成分析策略。

How to improve infectious disease prediction by integrating environmental data: an application of a novel ensemble analysis strategy to predict HFMD.

机构信息

West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.

Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan, People's Republic of China.

出版信息

Epidemiol Infect. 2021 Jan 15;149:e34. doi: 10.1017/S0950268821000091.

Abstract

This study proposed a novel ensemble analysis strategy to improve hand, foot and mouth disease (HFMD) prediction by integrating environmental data. The approach began by establishing a vector autoregressive model (VAR). Then, a dynamic Bayesian networks (DBN) model was used for variable selection of environmental factors. Finally, a VAR model with constraints (CVAR) was established for predicting the incidence of HFMD in Chengdu city from 2011 to 2017. DBN showed that temperature was related to HFMD at lags 1 and 2. Humidity, wind speed, sunshine, PM10, SO2 and NO2 were related to HFMD at lag 2. Compared with the autoregressive integrated moving average model with external variables (ARIMAX), the CVAR model had a higher coefficient of determination (R2, average difference: + 2.11%; t = 6.2051, P = 0.0003 < 0.05), a lower root mean-squared error (-24.88%; t = -5.2898, P = 0.0007 < 0.05) and a lower mean absolute percentage error (-16.69%; t = -4.3647, P = 0.0024 < 0.05). The accuracy of predicting the time-series shape was 88.16% for the CVAR model and 86.41% for ARIMAX. The CVAR model performed better in terms of variable selection, model interpretation and prediction. Therefore, it could be used by health authorities to identify potential HFMD outbreaks and develop disease control measures.

摘要

本研究提出了一种新颖的集成分析策略,通过整合环境数据来提高手足口病 (HFMD) 的预测能力。该方法首先建立了向量自回归模型 (VAR)。然后,使用动态贝叶斯网络 (DBN) 模型对环境因素进行变量选择。最后,建立了一个具有约束条件的 VAR 模型 (CVAR),用于预测 2011 年至 2017 年成都市 HFMD 的发病率。DBN 显示温度与滞后 1 步和滞后 2 步的 HFMD 有关。湿度、风速、日照、PM10、SO2 和 NO2 与滞后 2 步的 HFMD 有关。与带外生变量的自回归综合移动平均模型 (ARIMAX) 相比,CVAR 模型的决定系数 (R2,平均差异:+2.11%;t=6.2051,P=0.0003<0.05) 更高,均方根误差 (-24.88%;t=-5.2898,P=0.0007<0.05) 更低,平均绝对百分比误差 (-16.69%;t=-4.3647,P=0.0024<0.05) 更低。CVAR 模型预测时间序列形状的准确率为 88.16%,ARIMAX 模型的准确率为 86.41%。CVAR 模型在变量选择、模型解释和预测方面表现更好。因此,它可以被卫生当局用来识别潜在的 HFMD 爆发并制定疾病控制措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e34/8060825/2717a4ea1412/S0950268821000091_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验