Zhu Minshen, Hu Junping, Lu Qiongqiong, Dong Haiyun, Karnaushenko Dmitriy D, Becker Christian, Karnaushenko Daniil, Li Yang, Tang Hongmei, Qu Zhe, Ge Jin, Schmidt Oliver G
Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden, 01069, Germany.
School of Science, Nanchang Institute of Technology, Nanchang, 330099, China.
Adv Mater. 2021 Feb;33(8):e2007497. doi: 10.1002/adma.202007497. Epub 2021 Jan 14.
Owing to their high safety and reversibility, aqueous microbatteries using zinc anodes and an acid electrolyte have emerged as promising candidates for wearable electronics. However, a critical limitation that prevents implementing zinc chemistry at the microscale lies in its spontaneous corrosion in an acidic electrolyte that causes a capacity loss of 40% after a ten-hour rest. Widespread anti-corrosion techniques, such as polymer coating, often retard the kinetics of zinc plating/stripping and lack spatial control at the microscale. Here, a polyimide coating that resolves this dilemma is reported. The coating prevents corrosion and hence reduces the capacity loss of a standby microbattery to 10%. The coordination of carbonyl oxygen in the polyimide with zinc ions builds up over cycling, creating a zinc blanket that minimizes the concentration gradient through the electrode/electrolyte interface and thus allows for fast kinetics and low plating/stripping overpotential. The polyimide's patternable feature energizes microbatteries in both aqueous and hydrogel electrolytes, delivering a supercapacitor-level rate performance and 400 stable cycles in the hydrogel electrolyte. Moreover, the microbattery is able to be attached to human skin and offers strong resistance to deformations, splashing, and external shock. The skin-mountable microbattery demonstrates an excellent combination of anti-corrosion, reversibility, and durability in wearables.
由于其高安全性和可逆性,使用锌阳极和酸性电解质的水系微型电池已成为可穿戴电子产品的有前途的候选者。然而,阻碍在微观尺度上实现锌化学的一个关键限制在于其在酸性电解质中的自腐蚀,这会导致在静置十小时后容量损失40%。广泛使用的防腐技术,如聚合物涂层,往往会阻碍锌电镀/剥离的动力学,并且在微观尺度上缺乏空间控制。在此,报道了一种解决这一困境的聚酰亚胺涂层。该涂层可防止腐蚀,从而将备用微型电池的容量损失降低至10%。聚酰亚胺中羰基氧与锌离子的配位在循环过程中逐渐形成,形成一层锌覆盖层,使通过电极/电解质界面的浓度梯度最小化,从而实现快速动力学和低电镀/剥离过电位。聚酰亚胺的可图案化特性使微型电池在水性和水凝胶电解质中都能发挥作用,在水凝胶电解质中具有超级电容器级别的倍率性能和400次稳定循环。此外,该微型电池能够附着在人体皮肤上,并对变形、飞溅和外部冲击具有很强的抵抗力。这种可贴附在皮肤上的微型电池在可穿戴设备中展现出了防腐、可逆性和耐用性的出色结合。