Suppr超能文献

用于可穿戴微型电池中可逆锌阳极的可图案化且原位形成的聚合物锌覆盖层

A Patternable and In Situ Formed Polymeric Zinc Blanket for a Reversible Zinc Anode in a Skin-Mountable Microbattery.

作者信息

Zhu Minshen, Hu Junping, Lu Qiongqiong, Dong Haiyun, Karnaushenko Dmitriy D, Becker Christian, Karnaushenko Daniil, Li Yang, Tang Hongmei, Qu Zhe, Ge Jin, Schmidt Oliver G

机构信息

Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden, 01069, Germany.

School of Science, Nanchang Institute of Technology, Nanchang, 330099, China.

出版信息

Adv Mater. 2021 Feb;33(8):e2007497. doi: 10.1002/adma.202007497. Epub 2021 Jan 14.

Abstract

Owing to their high safety and reversibility, aqueous microbatteries using zinc anodes and an acid electrolyte have emerged as promising candidates for wearable electronics. However, a critical limitation that prevents implementing zinc chemistry at the microscale lies in its spontaneous corrosion in an acidic electrolyte that causes a capacity loss of 40% after a ten-hour rest. Widespread anti-corrosion techniques, such as polymer coating, often retard the kinetics of zinc plating/stripping and lack spatial control at the microscale. Here, a polyimide coating that resolves this dilemma is reported. The coating prevents corrosion and hence reduces the capacity loss of a standby microbattery to 10%. The coordination of carbonyl oxygen in the polyimide with zinc ions builds up over cycling, creating a zinc blanket that minimizes the concentration gradient through the electrode/electrolyte interface and thus allows for fast kinetics and low plating/stripping overpotential. The polyimide's patternable feature energizes microbatteries in both aqueous and hydrogel electrolytes, delivering a supercapacitor-level rate performance and 400 stable cycles in the hydrogel electrolyte. Moreover, the microbattery is able to be attached to human skin and offers strong resistance to deformations, splashing, and external shock. The skin-mountable microbattery demonstrates an excellent combination of anti-corrosion, reversibility, and durability in wearables.

摘要

由于其高安全性和可逆性,使用锌阳极和酸性电解质的水系微型电池已成为可穿戴电子产品的有前途的候选者。然而,阻碍在微观尺度上实现锌化学的一个关键限制在于其在酸性电解质中的自腐蚀,这会导致在静置十小时后容量损失40%。广泛使用的防腐技术,如聚合物涂层,往往会阻碍锌电镀/剥离的动力学,并且在微观尺度上缺乏空间控制。在此,报道了一种解决这一困境的聚酰亚胺涂层。该涂层可防止腐蚀,从而将备用微型电池的容量损失降低至10%。聚酰亚胺中羰基氧与锌离子的配位在循环过程中逐渐形成,形成一层锌覆盖层,使通过电极/电解质界面的浓度梯度最小化,从而实现快速动力学和低电镀/剥离过电位。聚酰亚胺的可图案化特性使微型电池在水性和水凝胶电解质中都能发挥作用,在水凝胶电解质中具有超级电容器级别的倍率性能和400次稳定循环。此外,该微型电池能够附着在人体皮肤上,并对变形、飞溅和外部冲击具有很强的抵抗力。这种可贴附在皮肤上的微型电池在可穿戴设备中展现出了防腐、可逆性和耐用性的出色结合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9e8/11469133/c82a5ae1fd72/ADMA-33-2007497-g006.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验