Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA.
Center for Bio-Integrated Electronics, Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL 60208, USA.
Sci Adv. 2019 Jan 18;5(1):eaav3294. doi: 10.1126/sciadv.aav3294. eCollection 2019 Jan.
Wearable sweat sensors rely either on electronics for electrochemical detection or on colorimetry for visual readout. Non-ideal form factors represent disadvantages of the former, while semiquantitative operation and narrow scope of measurable biomarkers characterize the latter. Here, we introduce a battery-free, wireless electronic sensing platform inspired by biofuel cells that integrates chronometric microfluidic platforms with embedded colorimetric assays. The resulting sensors combine advantages of electronic and microfluidic functionality in a platform that is significantly lighter, cheaper, and smaller than alternatives. A demonstration device simultaneously monitors sweat rate/loss, pH, lactate, glucose, and chloride. Systematic studies of the electronics, microfluidics, and integration schemes establish the key design considerations and performance attributes. Two-day human trials that compare concentrations of glucose and lactate in sweat and blood suggest a potential basis for noninvasive, semi-quantitative tracking of physiological status.
可穿戴汗液传感器依赖于电化学检测的电子设备或比色法进行视觉读数。前者的不理想形态因数是其缺点,而后者则表现为半定量操作和可测量生物标志物范围狭窄。在这里,我们引入了一种由生物燃料电池启发的无电池、无线电子传感平台,该平台将计时微流控平台与嵌入式比色分析相结合。由此产生的传感器在平台中结合了电子和微流控功能的优势,该平台比替代品更轻、更便宜、更小。演示设备可同时监测汗液速率/损失、pH 值、乳酸盐、葡萄糖和氯离子。对电子设备、微流控和集成方案的系统研究确定了关键的设计考虑因素和性能属性。为期两天的人体试验比较了汗液和血液中葡萄糖和乳酸盐的浓度,这表明非侵入性、半定量跟踪生理状态具有潜在的基础。