Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, UCB 427, Boulder, CO, 80309, USA.
Small. 2021 Feb;17(5):e2006109. doi: 10.1002/smll.202006109. Epub 2021 Jan 15.
Chromatin of the eukaryotic cell nucleus comprises microscopically dense heterochromatin and loose euchromatin domains, each with distinct transcriptional ability and roles in cellular mechanotransduction. While recent methods are developed to characterize the mechanics of nucleus, measurement of intranuclear mechanics remains largely unknown. Here, the development of "nuclear elastography," which combines microscopic imaging and computational modeling to quantify the relative elasticity of the heterochromatin and euchromatin domains, is described. Using contracting murine embryonic cardiomyocytes, nuclear elastography reveals that the heterochromatin is almost four times stiffer than the euchromatin at peak deformation. The relative elasticity between the two domains changes rapidly during the active deformation of the cardiomyocyte in the normal physiological condition but progresses more slowly in cells cultured in a mechanically stiff environment, although the relative stiffness at peak deformation does not change. Further, it is found that the disruption of the Klarsicht, ANC-1, Syne Homology domain of the Linker of Nucleoskeleton and Cytoskeleton complex compromises the intranuclear elasticity distribution resulting in elastically similar heterochromatin and euchromatin. These results provide insight into the elastography dynamics of heterochromatin and euchromatin domains and provide a noninvasive framework to further investigate the mechanobiological function of subcellular and subnuclear domains limited only by the spatiotemporal resolution of the acquired images.
真核细胞核的染色质包括显微镜下致密的异染色质和松散的常染色质区域,每个区域都具有不同的转录能力和在细胞机械转导中的作用。虽然最近开发了用于描述核力学的方法,但核内力学的测量仍然很大程度上未知。在这里,描述了“核弹性成像”的发展,它结合了微观成像和计算建模,以量化异染色质和常染色质区域的相对弹性。使用收缩的鼠胚胎心肌细胞,核弹性成像揭示了在最大变形时异染色质几乎比常染色质硬四倍。在正常生理条件下,心肌细胞主动变形过程中,两个区域之间的相对弹性变化很快,但在培养在机械僵硬环境中的细胞中进展较慢,尽管最大变形时的相对刚度没有变化。此外,发现 Klarsicht、ANC-1、Linker of Nucleoskeleton and Cytoskeleton 复合物的 Syne Homology 结构域的破坏会破坏核内弹性分布,导致弹性相似的异染色质和常染色质。这些结果提供了对异染色质和常染色质区域的弹性成像动力学的深入了解,并提供了一种非侵入性框架,可进一步研究仅受所获取图像的时空分辨率限制的亚细胞和亚核域的机械生物学功能。