Acquistapace Isabella M, Zi Etek Monika A, Li Arthur W H, Salmon Melissa, Kühn Imke, Bedford Mike R, Brearley Charles A, Hemmings Andrew M
School of Biological Sciences, University of East Anglia, Norwich, United Kingdom.
AB Vista, Darmstadt, Germany.
J Biol Chem. 2020 Dec 18;295(51):17724-17737. doi: 10.1074/jbc.RA120.015925.
Highly engineered phytases, which sequentially hydrolyze the hexakisphosphate ester of inositol known as phytic acid, are routinely added to the feeds of monogastric animals to improve phosphate bioavailability. New phytases are sought as starting points to further optimize the rate and extent of dephosphorylation of phytate in the animal digestive tract. Multiple inositol polyphosphate phosphatases (MINPPs) are clade 2 histidine phosphatases (HP2P) able to carry out the stepwise hydrolysis of phytate. MINPPs are not restricted by a strong positional specificity making them attractive targets for development as feed enzymes. Here, we describe the characterization of a MINPP from the Gram-positive bacterium Bifidobacterium longum (BlMINPP). BlMINPP has a typical HP2P-fold but, unusually, possesses a large α-domain polypeptide insertion relative to other MINPPs. This insertion, termed the U-loop, spans the active site and contributes to substrate specificity pockets underpopulated in other HP2Ps. Mutagenesis of U-loop residues reveals its contribution to enzyme kinetics and thermostability. Moreover, four crystal structures of the protein along the catalytic cycle capture, for the first time in an HP2P, a large ligand-driven α-domain motion essential to allow substrate access to the active site. This motion recruits residues both downstream of a molecular hinge and on the U-loop to participate in specificity subsites, and mutagenesis identified a mobile lysine residue as a key determinant of positional specificity of the enzyme. Taken together, these data provide important new insights to the factors determining stability, substrate recognition, and the structural mechanism of hydrolysis in this industrially important group of enzymes.
高度工程化的植酸酶可依次水解肌醇的六磷酸酯(即植酸),通常会添加到单胃动物的饲料中,以提高磷的生物利用率。人们一直在寻找新的植酸酶,作为进一步优化动物消化道中植酸去磷酸化速率和程度的起点。多种肌醇多磷酸磷酸酶(MINPPs)属于第2类组氨酸磷酸酶(HP2P),能够逐步水解植酸。MINPPs不受强烈的位置特异性限制,这使其成为极具吸引力的饲料酶开发靶点。在此,我们描述了来自革兰氏阳性菌长双歧杆菌(BlMINPP)的一种MINPP的特性。BlMINPP具有典型的HP2P折叠结构,但不同寻常的是,相对于其他MINPPs,它有一个大的α结构域多肽插入。这个插入结构称为U环,跨越活性位点,并对其他HP2P中数量不足的底物特异性口袋有贡献。U环残基的诱变揭示了其对酶动力学和热稳定性的贡献。此外,该蛋白在催化循环过程中的四个晶体结构首次在HP2P中捕捉到了一个由配体驱动且对底物进入活性位点至关重要的大的α结构域运动。这种运动募集了分子铰链下游和U环上的残基参与特异性亚位点,诱变确定了一个可移动的赖氨酸残基是该酶位置特异性的关键决定因素。综上所述,这些数据为决定这一具有工业重要性的酶类的稳定性、底物识别和水解结构机制的因素提供了重要的新见解。