Suppr超能文献

用于磁共振成像(MRI)重建的学习型卷积神经网络的泛化性评估。

Evaluation on the generalization of a learned convolutional neural network for MRI reconstruction.

作者信息

Huang Jinhong, Wang Shoushi, Zhou Genjiao, Hu Wenyu, Yu Gaohang

机构信息

School of Mathemtics and Computer Science, Gannan Normal University, China.

School of Mathemtics and Computer Science, Gannan Normal University, China.

出版信息

Magn Reson Imaging. 2022 Apr;87:38-46. doi: 10.1016/j.mri.2021.12.003. Epub 2021 Dec 27.

Abstract

Recently, deep learning approaches with various network architectures have drawn significant attention from the magnetic resonance imaging (MRI) community because of their great potential for image reconstruction from undersampled k-space data in fast MRI. However, the robustness of a trained network when applied to test data deviated from training data is still an important open question. In this work, we focus on quantitatively evaluating the influence of image contrast, human anatomy, sampling pattern, undersampling factor, and noise level on the generalization of a trained network composed by a cascade of several CNNs and a data consistency layer, called a deep cascade of convolutional neural network (DC-CNN). The DC-CNN is trained from datasets with different image contrast, human anatomy, sampling pattern, undersampling factor, and noise level, and then applied to test datasets consistent or inconsistent with the training datasets to assess the generalizability of the learned DC-CNN network. The results of our experiments show that reconstruction quality from the DC-CNN network is highly sensitive to sampling pattern, undersampling factor, and noise level, which are closely related to signal-to-noise ratio (SNR), and is relatively less sensitive to the image contrast. We also show that a deviation of human anatomy between training and test data leads to a substantial reduction of image quality for the brain dataset, whereas comparable performance for the chest and knee dataset having fewer anatomy details than brain images. This work further provides some empirical understanding of the generalizability of trained networks when there are deviations between training and test data. It also demonstrates the potential of transfer learning for image reconstruction from datasets different from those used in training the network.

摘要

最近,具有各种网络架构的深度学习方法引起了磁共振成像(MRI)领域的广泛关注,因为它们在快速MRI中从欠采样k空间数据进行图像重建方面具有巨大潜力。然而,当将训练好的网络应用于与训练数据不同的测试数据时,其鲁棒性仍然是一个重要的开放性问题。在这项工作中,我们专注于定量评估图像对比度、人体解剖结构、采样模式、欠采样因子和噪声水平对由几个卷积神经网络(CNN)和一个数据一致性层组成的训练网络(称为深度卷积神经网络级联(DC-CNN))泛化能力的影响。DC-CNN是从具有不同图像对比度、人体解剖结构、采样模式、欠采样因子和噪声水平的数据集进行训练的,然后应用于与训练数据集一致或不一致的测试数据集,以评估所学习的DC-CNN网络的泛化能力。我们的实验结果表明,DC-CNN网络的重建质量对采样模式、欠采样因子和噪声水平高度敏感,这些因素与信噪比(SNR)密切相关,而对图像对比度相对不敏感。我们还表明,训练数据和测试数据之间人体解剖结构的差异会导致大脑数据集的图像质量大幅下降,而对于胸部和膝盖数据集,由于其解剖细节比大脑图像少,性能则相当。这项工作进一步提供了一些关于训练数据和测试数据存在差异时训练网络泛化能力的实证理解。它还展示了迁移学习在从与训练网络所用数据集不同的数据集中进行图像重建的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验