Suppr超能文献

3D打印灌注生物反应器内生物工程化骨骼肌的分化可降低萎缩和炎症基因表达。

Differentiation of Bioengineered Skeletal Muscle within a 3D Printed Perfusion Bioreactor Reduces Atrophic and Inflammatory Gene Expression.

作者信息

Rimington Rowan P, Capel Andrew J, Chaplin Kerry F, Fleming Jacob W, Bandulasena H C Hemaka, Bibb Richard J, Christie Steven D R, Lewis Mark P

出版信息

ACS Biomater Sci Eng. 2019 Oct 14;5(10):5525-5538. doi: 10.1021/acsbiomaterials.9b00975. Epub 2019 Oct 3.

Abstract

Bioengineered skeletal muscle tissues benefit from dynamic culture environments which facilitate the appropriate provision of nutrients and removal of cellular waste products. Biologically compatible perfusion systems hold the potential to enhance the physiological biomimicry of in vitro tissues via dynamic culture, in addition to providing technological advances in analytical testing and live cellular imaging for analysis of cellular development. To meet such diverse requirements, perfusion systems require the capacity and adaptability to incorporate multiple cell laden constructs of both monolayer and bioengineered tissues. This work reports perfusion systems produced using additive manufacturing technology for the in situ phenotypic development of myogenic precursor cells in monolayer and bioengineered tissue. Biocompatibility of systems 3D printed using stereolithography (SL), laser sintering (LS), and PolyJet outlined preferential morphological development within both SL and LS devices. When exposed to intermittent perfusion in the monolayer, delayed yet physiologically representative cellular proliferation, MyoD and myogenin transcription of CC cells was evident. Long-term (8 days) intermittent perfusion of monolayer cultures outlined viable morphological and genetic in situ differentiation for the live cellular imaging of myogenic development. Continuous perfusion cultures (13 days) of bioengineered skeletal muscle tissues outlined in situ myogenic differentiation, forming mature multinucleated myotubes. Here, reductions in IL-1β and TNF-α inflammatory cytokines, myostatin, and MuRF-1 atrophic mRNA expression were observed. Comparable myosin heavy chain (MyHC) isoform transcription profiles were evident between conditions; however, total mRNA expression was reduced in perfusion conditions. Decreased transcription of MuRF1 and subsequent reduced ubiquitination of the MyHC protein allude to a decreased requirement for transcription of MyHC isoform transcripts. Together, these data appear to indicate that 3D printed perfusion systems elicit enhanced stability of the culture environment, resulting in a reduced basal requirement for MyHC gene expression within bioengineered skeletal muscle tissue.

摘要

生物工程化骨骼肌组织受益于动态培养环境,这种环境有助于适当提供营养物质并清除细胞代谢废物。生物相容性灌注系统不仅在分析测试和活细胞成像方面提供技术进步,以分析细胞发育,还具有通过动态培养增强体外组织生理仿生的潜力。为了满足这些多样化的需求,灌注系统需要具备容纳单层和生物工程组织的多个载有细胞的构建体的能力和适应性。这项工作报告了使用增材制造技术生产的灌注系统,用于肌源性前体细胞在单层和生物工程组织中的原位表型发育。使用立体光刻(SL)、激光烧结(LS)和PolyJet 3D打印的系统的生物相容性概述了SL和LS装置内的优先形态发育。当在单层中暴露于间歇灌注时,CC细胞的延迟但具有生理代表性的细胞增殖、MyoD和肌细胞生成素转录是明显的。单层培养物的长期(8天)间歇灌注概述了用于肌源性发育活细胞成像的可行形态和基因原位分化。生物工程化骨骼肌组织的连续灌注培养(13天)概述了原位肌源性分化,形成成熟的多核肌管。在这里,观察到IL-1β和TNF-α炎症细胞因子、肌肉生长抑制素和MuRF-1萎缩性mRNA表达的降低。不同条件下肌球蛋白重链(MyHC)同工型转录谱相当;然而,灌注条件下总mRNA表达降低。MuRF1转录减少以及随后MyHC蛋白泛素化减少表明对MyHC同工型转录本转录的需求降低。总之,这些数据似乎表明3D打印灌注系统提高了培养环境的稳定性,导致生物工程化骨骼肌组织中MyHC基因表达的基础需求降低。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验