Suppr超能文献

由工程重组蜘蛛丝蛋白制成的泡沫作为细胞生长的3D支架

Foams Made of Engineered Recombinant Spider Silk Proteins as 3D Scaffolds for Cell Growth.

作者信息

Schacht Kristin, Vogt Jessica, Scheibel Thomas

机构信息

Lehrstuhl Biomaterialien, ⊥Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), ||Institut für Bio-Makromoleküle (bio-mac), #Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), and △Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Universitätsstraße 30, D-95447 Bayreuth, Germany.

Lehrstuhl Biomaterialien, Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), ||Institut für Bio-Makromoleküle (bio-mac), #Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), and △Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Universitätsstraße 30, D-95447 Bayreuth, Germany.

出版信息

ACS Biomater Sci Eng. 2016 Apr 11;2(4):517-525. doi: 10.1021/acsbiomaterials.5b00483. Epub 2016 Mar 15.

Abstract

Materials for tissue engineering have to be biocompatible and have to support cell adhesion, proliferation and differentiation. Additionally, in case of soft tissue engineering the mechanical properties have to accommodate that of the tissue with mechanical integrity until the artificial scaffold is replaced by natural extracellular matrix. In case of artificial 3D scaffolds, it is of critical importance to be able to tune the mechanical properties, the inner free volume (i.e., pore size) and degradation behavior of the employed biomaterial. Here, the potential of recombinant spider silk proteins was evaluated concerning their processing into and application as 3D scaffolds for soft tissue engineering. Highly porous foams made of the recombinant spider silk protein eADF4(C16) and a variant containing an RGD motif were fabricated by salt leaching yielding mechanically robust scaffolds. In contrast to other salt-leached silk scaffolds, the swelling behavior of these scaffolds was low, and the mechanical properties in the range of soft tissues. The pore size and porosity of the foams could be adjusted by the salt crystal size. Fibroblasts adhered and proliferated well in foams made of the spider silk RGD variant but not in the foams of the nonmodified one.

摘要

用于组织工程的材料必须具有生物相容性,并且必须支持细胞粘附、增殖和分化。此外,在软组织工程中,机械性能必须与组织的机械性能相匹配,并保持机械完整性,直到人工支架被天然细胞外基质取代。对于人工三维支架而言,能够调节所用生物材料的机械性能、内部自由体积(即孔径)和降解行为至关重要。在此,对重组蜘蛛丝蛋白加工成用于软组织工程的三维支架并应用于该领域的潜力进行了评估。由重组蜘蛛丝蛋白eADF4(C16)和含RGD基序的变体制成的高孔隙率泡沫材料,通过盐析法制备出机械性能强劲的支架。与其他盐析丝支架不同,这些支架的溶胀行为较低,其机械性能处于软组织范围内。泡沫材料的孔径和孔隙率可通过盐晶体大小进行调节。成纤维细胞在由蜘蛛丝RGD变体制成的泡沫材料中粘附和增殖良好,但在未修饰的泡沫材料中则不然。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验