Suppr超能文献

基于机器学习的脑脊液代谢组学评估:对动脉瘤性蛛网膜下腔出血后不良结局的深入了解。

Machine Learning-Driven Metabolomic Evaluation of Cerebrospinal Fluid: Insights Into Poor Outcomes After Aneurysmal Subarachnoid Hemorrhage.

机构信息

Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts.

College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Centre for Computational Biology and NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham, United Kingdom.

出版信息

Neurosurgery. 2021 Apr 15;88(5):1003-1011. doi: 10.1093/neuros/nyaa557.

Abstract

BACKGROUND

Aneurysmal subarachnoid hemorrhage (aSAH) is associated with a high mortality and poor neurologic outcomes. The biologic underpinnings of the morbidity and mortality associated with aSAH remain poorly understood.

OBJECTIVE

To ascertain potential insights into pathological mechanisms of injury after aSAH using an approach of metabolomics coupled with machine learning methods.

METHODS

Using cerebrospinal fluid (CSF) samples from 81 aSAH enrolled in a retrospective cohort biorepository, samples collected during the peak of delayed cerebral ischemia were analyzed using liquid chromatography-tandem mass spectrometry. A total of 138 metabolites were measured and quantified in each sample. Data were analyzed using elastic net (EN) machine learning and orthogonal partial least squares-discriminant analysis (OPLS-DA) to identify the leading CSF metabolites associated with poor outcome, as determined by the modified Rankin Scale (mRS) at discharge and at 90 d. Repeated measures analysis determined the effect size for each metabolite on poor outcome.

RESULTS

EN machine learning and OPLS-DA analysis identified 8 and 10 metabolites, respectively, that predicted poor mRS (mRS 3-6) at discharge and at 90 d. Of these candidates, symmetric dimethylarginine (SDMA), dimethylguanidine valeric acid (DMGV), and ornithine were consistent markers, with an association with poor mRS at discharge (P = .0005, .002, and .0001, respectively) and at 90 d (P = .0036, .0001, and .004, respectively). SDMA also demonstrated a significantly elevated CSF concentration compared with nonaneurysmal subarachnoid hemorrhage controls (P = .0087).

CONCLUSION

SDMA, DMGV, and ornithine are vasoactive molecules linked to the nitric oxide pathway that predicts poor outcome after severe aSAH. Further study of dimethylarginine metabolites in brain injury after aSAH is warranted.

摘要

背景

蛛网膜下腔出血(aSAH)与高死亡率和不良神经预后相关。与 aSAH 相关的发病率和死亡率的生物学基础仍知之甚少。

目的

利用代谢组学结合机器学习方法,确定蛛网膜下腔出血后损伤病理机制的潜在见解。

方法

使用 81 例回顾性队列生物标本库中 aSAH 患者的脑脊液(CSF)样本,对在迟发性脑缺血高峰期采集的样本进行液相色谱-串联质谱分析。在每个样本中测量和定量了 138 种代谢物。使用弹性网(EN)机器学习和正交偏最小二乘判别分析(OPLS-DA)分析数据,以确定与不良结局相关的主要 CSF 代谢物,不良结局由出院时和 90 天时改良 Rankin 量表(mRS)确定。重复测量分析确定了每种代谢物对不良结局的效应大小。

结果

EN 机器学习和 OPLS-DA 分析分别确定了 8 种和 10 种代谢物,可预测出院时和 90 天时 mRS 不良(mRS 3-6)。在这些候选物中,对称二甲基精氨酸(SDMA)、二甲基胍戊酸(DMGV)和鸟氨酸是一致的标志物,与出院时 mRS 不良相关(P 分别为.0005、.002 和.0001)和 90 天(P 分别为.0036、.0001 和.004)。SDMA 与非动脉瘤性蛛网膜下腔出血对照组相比,CSF 浓度也明显升高(P 分别为.0087)。

结论

SDMA、DMGV 和鸟氨酸是与一氧化氮途径相关的血管活性分子,可预测严重 aSAH 后的不良结局。进一步研究脑损伤后二甲基精氨酸代谢物是有必要的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa29/8046589/222ac6342752/nyaa557ga.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验