Suppr超能文献

利用多尺度深度强化学习构建大规模定量成像数据库:全身器官容积分析的初步经验。

Building Large-Scale Quantitative Imaging Databases with Multi-Scale Deep Reinforcement Learning: Initial Experience with Whole-Body Organ Volumetric Analyses.

机构信息

Department of Radiology, University Hospital of Basel, Basel, Basel-Stadt, Switzerland.

出版信息

J Digit Imaging. 2021 Feb;34(1):124-133. doi: 10.1007/s10278-020-00398-y. Epub 2021 Jan 19.

Abstract

To explore the feasibility of a fully automated workflow for whole-body volumetric analyses based on deep reinforcement learning (DRL) and to investigate the influence of contrast-phase (CP) and slice thickness (ST) on the calculated organ volume. This retrospective study included 431 multiphasic CT datasets-including three CP and two ST reconstructions for abdominal organs-totaling 10,508 organ volumes (10,344 abdominal organ volumes: liver, spleen, and kidneys, 164 lung volumes). Whole-body organ volumes were determined using multi-scale DRL for 3D anatomical landmark detection and 3D organ segmentation. Total processing time for all volumes and mean calculation time per case were recorded. Repeated measures analyses of variance (ANOVA) were conducted to test for robustness considering CP and ST. The algorithm calculated organ volumes for the liver, spleen, and right and left kidney (mean volumes in milliliter (interquartile range), portal venous CP, 5 mm ST: 1868.6 (1426.9, 2157.8), 350.19 (45.46, 395.26), 186.30 (147.05, 214.99) and 181.91 (143.22, 210.35), respectively), and for the right and left lung (2363.1 (1746.3, 2851.3) and 1950.9 (1335.2, 2414.2)). We found no statistically significant effects of the variable contrast phase or the variable slice thickness on the organ volumes. Mean computational time per case was 10 seconds. The evaluated approach, using state-of-the art DRL, enables a fast processing of substantial amounts irrespective of CP and ST, allowing building up organ-specific volumetric databases. The thus derived volumes may serve as reference for quantitative imaging follow-up.

摘要

探索基于深度强化学习(DRL)的全身容积分析全自动化工作流程的可行性,并研究对比相(CP)和切片厚度(ST)对计算器官体积的影响。这项回顾性研究纳入了 431 例多期 CT 数据集,包括腹部器官的三个 CP 和两个 ST 重建,共 10508 个器官体积(10344 个腹部器官体积:肝脏、脾脏和肾脏,164 个肺体积)。全身器官体积通过用于 3D 解剖学标志检测和 3D 器官分割的多尺度 DRL 确定。记录所有体积的总处理时间和每个病例的平均计算时间。考虑 CP 和 ST,采用重复测量方差分析(ANOVA)进行稳健性检验。该算法计算了肝脏、脾脏、右肾和左肾的器官体积(毫升(四分位间距)的平均体积,门静脉 CP,5 毫米 ST:1868.6(1426.9,2157.8),350.19(45.46,395.26),186.30(147.05,214.99)和 181.91(143.22,210.35)),以及右肺和左肺的体积(2363.1(1746.3,2851.3)和 1950.9(1335.2,2414.2))。我们没有发现对比相或切片厚度这两个变量对器官体积有统计学显著影响。每个病例的平均计算时间为 10 秒。使用最先进的 DRL 评估的方法能够快速处理大量数据,而不受 CP 和 ST 的影响,从而构建器官特异性容积数据库。由此得出的体积可作为定量成像随访的参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验