Suppr超能文献

高通量单细胞 RNA-seq 方法在免疫细胞分析中的系统比较。

Systematic comparison of high-throughput single-cell RNA-seq methods for immune cell profiling.

机构信息

Genome Analysis Unit, Amgen Research, 1120 Veterans Blvd, South San Francisco, CA, 94080, USA.

Oncology/Inflammation, Amgen Research, 1120 Veterans Blvd, South San Francisco, CA, United States.

出版信息

BMC Genomics. 2021 Jan 20;22(1):66. doi: 10.1186/s12864-020-07358-4.

Abstract

BACKGROUND

Elucidation of immune populations with single-cell RNA-seq has greatly benefited the field of immunology by deepening the characterization of immune heterogeneity and leading to the discovery of new subtypes. However, single-cell methods inherently suffer from limitations in the recovery of complete transcriptomes due to the prevalence of cellular and transcriptional dropout events. This issue is often compounded by limited sample availability and limited prior knowledge of heterogeneity, which can confound data interpretation.

RESULTS

Here, we systematically benchmarked seven high-throughput single-cell RNA-seq methods. We prepared 21 libraries under identical conditions of a defined mixture of two human and two murine lymphocyte cell lines, simulating heterogeneity across immune-cell types and cell sizes. We evaluated methods by their cell recovery rate, library efficiency, sensitivity, and ability to recover expression signatures for each cell type. We observed higher mRNA detection sensitivity with the 10x Genomics 5' v1 and 3' v3 methods. We demonstrate that these methods have fewer dropout events, which facilitates the identification of differentially-expressed genes and improves the concordance of single-cell profiles to immune bulk RNA-seq signatures.

CONCLUSION

Overall, our characterization of immune cell mixtures provides useful metrics, which can guide selection of a high-throughput single-cell RNA-seq method for profiling more complex immune-cell heterogeneity usually found in vivo.

摘要

背景

通过单细胞 RNA 测序阐明免疫群体,通过加深免疫异质性的特征描述并发现新的亚型,极大地促进了免疫学领域的发展。然而,由于细胞和转录本丢失事件的普遍存在,单细胞方法在恢复完整转录组方面存在固有局限性。由于样本有限和对异质性的先验知识有限,这个问题通常会更加复杂,从而混淆数据解释。

结果

在这里,我们系统地对七种高通量单细胞 RNA 测序方法进行了基准测试。我们在定义的两种人源和两种鼠源淋巴细胞系混合物的相同条件下制备了 21 个文库,模拟了免疫细胞类型和细胞大小的异质性。我们通过细胞回收率、文库效率、灵敏度以及每种细胞类型的表达特征恢复能力来评估方法。我们观察到 10x Genomics 5' v1 和 3' v3 方法具有更高的 mRNA 检测灵敏度。我们证明这些方法的丢失事件较少,这有助于识别差异表达基因,并提高单细胞图谱与免疫批量 RNA-seq 特征的一致性。

结论

总的来说,我们对免疫细胞混合物的特征描述提供了有用的指标,可指导选择高通量单细胞 RNA 测序方法,以对通常在体内发现的更复杂的免疫细胞异质性进行分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3f7/7818754/0e3d7aba411b/12864_2020_7358_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验