Suppr超能文献

COVID-TRACK:全球及美国的新冠病毒检测与新冠肺炎追踪

COVID-TRACK: world and USA SARS-COV-2 testing and COVID-19 tracking.

作者信息

Zohner Ye Emma, Morris Jeffrey S

机构信息

Department of Statistics, Rice University, 6100 Main Street, Houston, TX, 77005, USA.

Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, 600 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA.

出版信息

BioData Min. 2021 Jan 20;14(1):4. doi: 10.1186/s13040-021-00233-2.

Abstract

BACKGROUND

The COVID-19 pandemic has caused major health and socio-economic disruptions worldwide. Accurate investigation of emerging data is crucial to inform policy makers as they construct viral mitigation strategies. Complications such as variable testing rates and time lags in counting cases, hospitalizations and deaths make it challenging to accurately track and identify true infectious surges from available data, and requires a multi-modal approach that simultaneously considers testing, incidence, hospitalizations, and deaths. Although many websites and applications report a subset of these data, none of them provide graphical displays capable of comparing different states or countries on all these measures as well as various useful quantities derived from them. Here we introduce a freely available dynamic representation tool, COVID-TRACK, that allows the user to simultaneously assess time trends in these measures and compare various states or countries, equipping them with a tool to investigate the potential effects of the different mitigation strategies and timelines used by various jurisdictions.

FINDINGS

COVID-TRACK is a Python based web-application that provides a platform for tracking testing, incidence, hospitalizations, and deaths related to COVID-19 along with various derived quantities. Our application makes the comparison across states in the USA and countries in the world easy to explore, with useful transformation options including per capita, log scale, and/or moving averages. We illustrate its use by assessing various viral trends in the USA and Europe.

CONCLUSION

The COVID-TRACK web-application is a user-friendly analytical tool to compare data and trends related to the COVID-19 pandemic across areas in the United States and worldwide. Our tracking tool provides a unique platform where trends can be monitored across geographical areas in the coming months to watch how the pandemic waxes and wanes over time at different locations around the USA and the globe.

摘要

背景

新冠疫情在全球范围内造成了重大的健康和社会经济破坏。准确调查新出现的数据对于政策制定者构建病毒缓解策略至关重要。诸如检测率变化以及病例、住院和死亡计数中的时间滞后等复杂情况,使得从现有数据中准确追踪和识别真正的感染激增具有挑战性,这需要一种多模式方法,同时考虑检测、发病率、住院率和死亡率。尽管许多网站和应用程序报告了这些数据的一个子集,但它们都没有提供能够在所有这些指标以及从这些指标派生的各种有用数量方面比较不同州或国家的图形显示。在这里,我们介绍一种免费的动态表示工具COVID - TRACK,它允许用户同时评估这些指标的时间趋势并比较不同的州或国家,为他们提供一个工具来研究不同司法管辖区使用的不同缓解策略和时间线的潜在影响。

研究结果

COVID - TRACK是一个基于Python的网络应用程序,它提供了一个平台,用于跟踪与新冠疫情相关的检测、发病率、住院率和死亡率以及各种派生数量。我们的应用程序使美国各州和世界各国之间的比较易于探索,具有有用的转换选项,包括人均、对数尺度和/或移动平均值。我们通过评估美国和欧洲的各种病毒趋势来说明其用途。

结论

COVID - TRACK网络应用程序是一个用户友好的分析工具,用于比较美国和全球各地与新冠疫情相关的数据和趋势。我们的跟踪工具提供了一个独特的平台,在接下来的几个月里,可以在不同地理区域监测趋势,以观察疫情在美国和全球不同地点如何随时间起伏。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d440/7816403/fabaf2c26c95/13040_2021_233_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验