Suppr超能文献

基于多基因风险模型评估肺癌绝对风险轨迹。

Assessing Lung Cancer Absolute Risk Trajectory Based on a Polygenic Risk Model.

机构信息

Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada.

Dalla Lana School of Public Health, University of Toronto, Toronto, Canada.

出版信息

Cancer Res. 2021 Mar 15;81(6):1607-1615. doi: 10.1158/0008-5472.CAN-20-1237. Epub 2021 Jan 20.

Abstract

Lung cancer is the leading cause of cancer-related death globally. An improved risk stratification strategy can increase efficiency of low-dose CT (LDCT) screening. Here we assessed whether individual's genetic background has clinical utility for risk stratification in the context of LDCT screening. On the basis of 13,119 patients with lung cancer and 10,008 controls with European ancestry in the International Lung Cancer Consortium, we constructed a polygenic risk score (PRS) via 10-fold cross-validation with regularized penalized regression. The performance of risk model integrating PRS, including calibration and ability to discriminate, was assessed using UK Biobank data ( = 335,931). Absolute risk was estimated on the basis of age-specific lung cancer incidence and all-cause mortality as competing risk. To evaluate its potential clinical utility, the PRS distribution was simulated in the National Lung Screening Trial ( = 50,772 participants). The lung cancer ORs for individuals at the top decile of the PRS distribution versus those at bottom 10% was 2.39 [95% confidence interval (CI) = 1.92-3.00; = 1.80 × 10] in the validation set ( = 5.26 × 10). The OR per SD of PRS increase was 1.26 (95% CI = 1.20-1.32; = 9.69 × 10) for overall lung cancer risk in the validation set. When considering absolute risks, individuals at different PRS deciles showed differential trajectories of 5-year and cumulative absolute risk. The age reaching the LDCT screening recommendation threshold can vary by 4 to 8 years, depending on the individual's genetic background, smoking status, and family history. Collectively, these results suggest that individual's genetic background may inform the optimal lung cancer LDCT screening strategy. SIGNIFICANCE: Three large-scale datasets reveal that, after accounting for risk factors, an individual's genetics can affect their lung cancer risk trajectory, thus may inform the optimal timing for LDCT screening.

摘要

肺癌是全球癌症相关死亡的主要原因。改进风险分层策略可以提高低剂量 CT(LDCT)筛查的效率。在这里,我们评估了个体的遗传背景是否具有 LDCT 筛查背景下的风险分层临床实用性。在国际肺癌联合会的 13119 例肺癌患者和 10008 例欧洲血统对照者的基础上,我们通过正则化惩罚回归的 10 折交叉验证构建了多基因风险评分(PRS)。使用英国生物库数据(= 335931)评估了包含 PRS 的风险模型的性能,包括校准和区分能力。根据特定年龄的肺癌发病率和全因死亡率作为竞争风险来估计绝对风险。为了评估其潜在的临床实用性,在国家肺癌筛查试验(= 50772 名参与者)中模拟了 PRS 分布。与 PRS 分布底部 10%的个体相比,PRS 分布顶部 10%的个体的肺癌 OR 为 2.39(95%CI = 1.92-3.00;= 1.80×10)在验证集中(= 5.26×10)。PRS 每增加一个标准差的 OR 为 1.26(95%CI = 1.20-1.32;= 9.69×10),用于验证集中的总体肺癌风险。考虑到绝对风险,处于不同 PRS 十分位数的个体显示出 5 年和累积绝对风险的不同轨迹。达到 LDCT 筛查推荐阈值的年龄可以根据个体的遗传背景、吸烟状况和家族史而变化 4 到 8 年。总的来说,这些结果表明个体的遗传背景可能为最佳的肺癌 LDCT 筛查策略提供信息。

意义

三个大型数据集表明,在考虑到风险因素后,个体的遗传可以影响他们的肺癌风险轨迹,从而可能为 LDCT 筛查的最佳时机提供信息。

相似文献

1
Assessing Lung Cancer Absolute Risk Trajectory Based on a Polygenic Risk Model.
Cancer Res. 2021 Mar 15;81(6):1607-1615. doi: 10.1158/0008-5472.CAN-20-1237. Epub 2021 Jan 20.
2
Evaluating the prognostic performance of a polygenic risk score for breast cancer risk stratification.
BMC Cancer. 2021 Dec 20;21(1):1351. doi: 10.1186/s12885-021-08937-8.
3
Predicting Lung Cancer Occurrence in Never-Smoking Females in Asia: TNSF-SQ, a Prediction Model.
Cancer Epidemiol Biomarkers Prev. 2020 Feb;29(2):452-459. doi: 10.1158/1055-9965.EPI-19-1221. Epub 2019 Dec 17.
5
Identification of risk loci and a polygenic risk score for lung cancer: a large-scale prospective cohort study in Chinese populations.
Lancet Respir Med. 2019 Oct;7(10):881-891. doi: 10.1016/S2213-2600(19)30144-4. Epub 2019 Jul 17.
7
Epidemiology of lung cancer and lung cancer screening programs in China and the United States.
Cancer Lett. 2020 Jan 1;468:82-87. doi: 10.1016/j.canlet.2019.10.009. Epub 2019 Oct 7.
9
10
One-off low-dose CT for lung cancer screening in China: a multicentre, population-based, prospective cohort study.
Lancet Respir Med. 2022 Apr;10(4):378-391. doi: 10.1016/S2213-2600(21)00560-9. Epub 2022 Mar 8.

引用本文的文献

2
A systematic review and meta-analysis of lung cancer risk prediction models.
Acta Oncol. 2025 May 12;64:661-671. doi: 10.2340/1651-226X.2025.42529.
6
Effect of Long-Term Fine Particulate Matter Exposure on Lung Cancer Incidence and Mortality in Chinese Nonsmokers.
Am J Respir Crit Care Med. 2025 Apr;211(4):600-609. doi: 10.1164/rccm.202408-1661OC.
9
Genetic risk, health-associated lifestyle, and risk of early-onset total cancer and breast cancer.
J Natl Cancer Inst. 2025 Jan 1;117(1):40-48. doi: 10.1093/jnci/djae208.
10

本文引用的文献

1
A tutorial on calibration measurements and calibration models for clinical prediction models.
J Am Med Inform Assoc. 2020 Apr 1;27(4):621-633. doi: 10.1093/jamia/ocz228.
3
iCARE: An R package to build, validate and apply absolute risk models.
PLoS One. 2020 Feb 5;15(2):e0228198. doi: 10.1371/journal.pone.0228198. eCollection 2020.
4
Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial.
N Engl J Med. 2020 Feb 6;382(6):503-513. doi: 10.1056/NEJMoa1911793. Epub 2020 Jan 29.
6
Towards clinical utility of polygenic risk scores.
Hum Mol Genet. 2019 Nov 21;28(R2):R133-R142. doi: 10.1093/hmg/ddz187.
7
The UK Biobank resource with deep phenotyping and genomic data.
Nature. 2018 Oct;562(7726):203-209. doi: 10.1038/s41586-018-0579-z. Epub 2018 Oct 10.
8
Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
CA Cancer J Clin. 2018 Nov;68(6):394-424. doi: 10.3322/caac.21492. Epub 2018 Sep 12.
9
Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations.
Nat Genet. 2018 Sep;50(9):1219-1224. doi: 10.1038/s41588-018-0183-z. Epub 2018 Aug 13.
10
Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci.
Nat Genet. 2018 Jul;50(7):928-936. doi: 10.1038/s41588-018-0142-8. Epub 2018 Jun 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验