Suppr超能文献

SARS-CoV-2 非结构蛋白 1 与 40S 核糖体结合抑制 mRNA 翻译。

Binding of SARS-CoV-2 Nonstructural Protein 1 to 40S Ribosome Inhibits mRNA Translation.

机构信息

Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.

Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam.

出版信息

J Phys Chem B. 2024 Jul 25;128(29):7033-7042. doi: 10.1021/acs.jpcb.4c01391. Epub 2024 Jul 15.

Abstract

Experimental evidence has established that SARS-CoV-2 NSP1 acts as a factor that restricts cellular gene expression and impedes mRNA translation within the ribosome's 40S subunit. However, the precise molecular mechanisms underlying this phenomenon have remained elusive. To elucidate this issue, we employed a combination of all-atom steered molecular dynamics and coarse-grained alchemical simulations to explore the binding affinity of mRNA to the 40S ribosome, both in the presence and absence of SARS-CoV-2 NSP1. Our investigations revealed that the binding of SARS-CoV-2 NSP1 to the 40S ribosome leads to a significant enhancement in the binding affinity of mRNA. This observation, which aligns with experimental findings, strongly suggests that SARS-CoV-2 NSP1 has the capability to inhibit mRNA translation. Furthermore, we identified electrostatic interactions between mRNA and the 40S ribosome as the primary driving force behind mRNA translation. Notably, water molecules were found to play a pivotal role in stabilizing the mRNA-40S ribosome complex, underscoring their significance in this process. We successfully pinpointed the specific SARS-CoV-2 NSP1 residues that play a critical role in triggering the translation arrest.

摘要

实验证据已经确立,SARS-CoV-2 的 NSP1 作为一种因子,限制细胞基因表达,并在核糖体的 40S 亚基内阻碍 mRNA 翻译。然而,这一现象背后的精确分子机制仍难以捉摸。为了解决这个问题,我们采用全原子引导分子动力学和粗粒化变分模拟相结合的方法,探索了 SARS-CoV-2 NSP1 存在和不存在的情况下,mRNA 与 40S 核糖体的结合亲和力。我们的研究表明,SARS-CoV-2 NSP1 与 40S 核糖体的结合导致 mRNA 结合亲和力的显著增强。这一观察结果与实验结果一致,强烈表明 SARS-CoV-2 NSP1 有能力抑制 mRNA 翻译。此外,我们确定了 mRNA 和 40S 核糖体之间的静电相互作用是 mRNA 翻译的主要驱动力。值得注意的是,水分子被发现对稳定 mRNA-40S 核糖体复合物起着关键作用,突出了它们在这一过程中的重要性。我们成功地确定了在引发翻译停滞中起关键作用的特定 SARS-CoV-2 NSP1 残基。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e09/11284778/f6cd29b358d8/jp4c01391_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验