Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, 80539 Munich, Germany.
Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.
Proc Natl Acad Sci U S A. 2021 Jan 26;118(4). doi: 10.1073/pnas.2009959118.
The biphasic adhesion-velocity relation is a universal observation in mesenchymal cell motility. It has been explained by adhesion-promoted forces pushing the front and resisting motion at the rear. Yet, there is little quantitative understanding of how these forces control cell velocity. We study motion of MDA-MB-231 cells on microlanes with fields of alternating Fibronectin densities to address this topic and derive a mathematical model from the leading-edge force balance and the force-dependent polymerization rate. It reproduces quantitatively our measured adhesion-velocity relation and results with keratocytes, PtK1 cells, and CHO cells. Our results confirm that the force pushing the leading-edge membrane drives lamellipodial retrograde flow. Forces resisting motion originate along the whole cell length. All motion-related forces are controlled by adhesion and velocity, which allows motion, even with higher Fibronectin density at the rear than at the front. We find the pathway from Fibronectin density to adhesion structures to involve strong positive feedbacks. Suppressing myosin activity reduces the positive feedback. At transitions between different Fibronectin densities, steady motion is perturbed and leads to changes of cell length and front and rear velocity. Cells exhibit an intrinsic length set by adhesion strength, which, together with the length dynamics, suggests a spring-like front-rear interaction force. We provide a quantitative mechanistic picture of the adhesion-velocity relation and cell response to adhesion changes integrating force-dependent polymerization, retrograde flow, positive feedback from integrin to adhesion structures, and spring-like front-rear interaction.
双相黏附-速度关系是间质细胞运动中的普遍观察现象。它可以通过促进黏附的力来解释,这些力推动前缘并抵抗后缘的运动。然而,对于这些力如何控制细胞速度,我们的定量理解还很少。我们研究了 MDA-MB-231 细胞在微槽上的运动,这些微槽上有交替的纤维连接蛋白密度场,以解决这个问题,并从前缘的力平衡和力依赖的聚合速率中推导出一个数学模型。它定量地再现了我们测量的黏附-速度关系,以及与角膜细胞、PtK1 细胞和 CHO 细胞的结果。我们的结果证实,推动前缘膜的力驱动了片状伪足的逆行流动。抵抗运动的力起源于整个细胞长度。所有与运动相关的力都受到黏附和速度的控制,这允许即使在后缘的纤维连接蛋白密度高于前缘时也能进行运动。我们发现,从纤维连接蛋白密度到黏附结构的途径涉及强烈的正反馈。抑制肌球蛋白活性会降低正反馈。在不同纤维连接蛋白密度之间的转变中,稳定的运动受到干扰,导致细胞长度和前后速度的变化。细胞表现出由黏附强度决定的固有长度,这与长度动力学一起,表明了一种类似弹簧的前缘-后缘相互作用力。我们提供了一个定量的力学图像,说明了黏附-速度关系以及细胞对黏附变化的反应,包括力依赖的聚合、逆行流动、整合素到黏附结构的正反馈以及类似弹簧的前缘-后缘相互作用。