Suppr超能文献

对现代方法的反思:异质疾病病因学的因果推理考虑因素。

Reflection on modern methods: causal inference considerations for heterogeneous disease etiology.

机构信息

Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv, Israel.

Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

出版信息

Int J Epidemiol. 2021 Jul 9;50(3):1030-1037. doi: 10.1093/ije/dyaa278.

Abstract

Molecular pathological epidemiology research provides information about pathogenic mechanisms. A common study goal is to evaluate whether the effects of risk factors on disease incidence vary between different disease subtypes. A popular approach to carrying out this type of research is to implement a multinomial regression in which each of the non-zero values corresponds to a bona fide disease subtype. Then, heterogeneity in the exposure effects across subtypes is examined by comparing the coefficients of the exposure between the different subtypes. In this paper, we explain why this common method potentially cannot recover causal effects, even when all confounders are measured, due to a particular type of selection bias. This bias can be explained by recognizing that the multinomial regression is equivalent to a series of logistic regressions; each compares cases of a certain subtype to the controls. We further explain how this bias arises using directed acyclic graphs and we demonstrate the potential magnitude of the bias by analysis of a hypothetical data set and by a simulation study.

摘要

分子病理流行病学研究提供了有关发病机制的信息。一个常见的研究目标是评估危险因素对疾病发病率的影响是否在不同疾病亚型之间存在差异。一种常用的方法是实施多分类回归,其中每个非零值对应于一个真正的疾病亚型。然后,通过比较不同亚型之间暴露因素的系数,来检查暴露因素在不同亚型之间的效应异质性。在本文中,我们解释了为什么即使所有混杂因素都被测量了,由于特定类型的选择偏差,这种常见的方法也可能无法恢复因果效应。这种偏差可以通过认识到多分类回归等同于一系列逻辑回归来解释;每个回归都将特定亚型的病例与对照组进行比较。我们进一步使用有向无环图解释了这种偏差是如何产生的,并用假设数据集的分析和模拟研究展示了这种偏差的潜在程度。

相似文献

2
Causal Diagrams: Pitfalls and Tips.因果图:陷阱与技巧。
J Epidemiol. 2020 Apr 5;30(4):153-162. doi: 10.2188/jea.JE20190192. Epub 2020 Feb 1.
4
A Potential Outcomes Approach to Selection Bias.潜在结果方法解决选择偏差问题。
Epidemiology. 2023 Nov 1;34(6):865-872. doi: 10.1097/EDE.0000000000001660. Epub 2023 Sep 14.
7
Directed Acyclic Graphs in Surgical Research.有向无环图在外科研究中的应用。
J Surg Res. 2023 Feb;282:285-288. doi: 10.1016/j.jss.2022.07.017. Epub 2022 Aug 29.
8
Reducing bias through directed acyclic graphs.通过有向无环图减少偏差。
BMC Med Res Methodol. 2008 Oct 30;8:70. doi: 10.1186/1471-2288-8-70.
10
[Application of directed acyclic graphs in identifying and controlling confounding bias].有向无环图在识别和控制混杂偏倚中的应用
Zhonghua Liu Xing Bing Xue Za Zhi. 2020 Apr 10;41(4):585-588. doi: 10.3760/cma.j.cn112338-20190729-00559.

引用本文的文献

本文引用的文献

10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验