Suppr超能文献

Cold- and norepinephrine-induced thermogenesis in younger and older Fischer 344 rats.

作者信息

McDonald R B, Horwitz B A, Hamilton J S, Stern J S

机构信息

Department of Nutrition, University of California, Davis 95616.

出版信息

Am J Physiol. 1988 Mar;254(3 Pt 2):R457-62. doi: 10.1152/ajpregu.1988.254.3.R457.

Abstract

Older rats exposed to low environmental temperatures show attenuated thermogenesis. However, the mechanisms responsible for this attenuation are not clear. This investigation evaluated the possibility that reduced nonshivering thermogenic capacity is associated with this attenuation. O2 consumption was measured in male Fischer 344 rats ages 7 and 24 mo at thermoneutrality (26 degrees C), during exposure to cold (6 degrees C) for 2 h, and during norepinephrine (NE) infusion (an in vivo measure of nonshivering thermogenesis). In addition, the binding of GDP to isolated mitochondria of brown fat, an in vitro estimate of nonshivering thermogenesis, was also measured. Resting mass-independent O2 consumption (ml.min-1.g body mass -0.67) was not different between the two age groups. However, mass-independent O2 consumption was significantly greater in the younger vs. older rats during 2 h of cold exposure (younger, 2.86 +/- 0.19 l/kg body mass 0.67; older, 2.39 +/- 0.10 l/kg body mass 0.67) and during 20 min of maximum NE infusion (younger, 410.4 +/- 15.1 ml/kg body mass)] was greater in younger than ml/kg body mass 0.67). Brown fat mass [absolute (g) as well as relative (g tissue/kg body mass)] was greater in younger than in older rats. Furthermore, younger rats had significantly greater binding of GDP to isolated mitochondria of brown fat than did the older rats. This effect was true whether the data were expressed as nanomoles bound per milligram mitochondrial protein (32% lower in older rats), bound nanomoles recovered (57% lower), or bound picogram per kilogram body mass 0.67 (59% lower).(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验