Suppr超能文献

绿巨人——一个拥有生产高价值蛋白强大能力的微小叶绿体基因组:历史与系统发育。

Green giant-a tiny chloroplast genome with mighty power to produce high-value proteins: history and phylogeny.

机构信息

Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.

National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.

出版信息

Plant Biotechnol J. 2021 Mar;19(3):430-447. doi: 10.1111/pbi.13556. Epub 2021 Feb 22.

Abstract

Free-living cyanobacteria were entrapped by eukaryotic cells ~2 billion years ago, ultimately giving rise to chloroplasts. After a century of debate, the presence of chloroplast DNA was demonstrated in the 1960s. The first chloroplast genomes were sequenced in the 1980s, followed by ~100 vegetable, fruit, cereal, beverage, oil and starch/sugar crop chloroplast genomes in the past three decades. Foreign genes were expressed in isolated chloroplasts or intact plant cells in the late 1980s and stably integrated into chloroplast genomes, with typically maternal inheritance shown in the 1990s. Since then, chloroplast genomes conferred the highest reported levels of tolerance or resistance to biotic or abiotic stress. Although launching products with agronomic traits in important crops using this concept has been elusive, commercial products developed include enzymes used in everyday life from processing fruit juice, to enhancing water absorption of cotton fibre or removal of stains as laundry detergents and in dye removal in the textile industry. Plastid genome sequences have revealed the framework of green plant phylogeny as well as the intricate history of plastid genome transfer events to other eukaryotes. Discordant historical signals among plastid genes suggest possible variable constraints across the plastome and further understanding and mitigation of these constraints may yield new opportunities for bioengineering. In this review, we trace the evolutionary history of chloroplasts, status of autonomy and recent advances in products developed for everyday use or those advanced to the clinic, including treatment of COVID-19 patients and SARS-CoV-2 vaccine.

摘要

大约 20 亿年前,自由生活的蓝藻被真核细胞捕获,最终产生了叶绿体。经过一个世纪的争论,叶绿体 DNA 的存在在 20 世纪 60 年代得到了证明。第一个叶绿体基因组于 20 世纪 80 年代测序,随后在过去的三十年中,约有 100 种蔬菜、水果、谷物、饮料、油和淀粉/糖作物的叶绿体基因组被测序。20 世纪 80 年代末,外源基因在分离的叶绿体或完整的植物细胞中表达,并稳定整合到叶绿体基因组中,通常表现为母系遗传。自那时以来,叶绿体基因组赋予了最高水平的生物或非生物胁迫耐受性或抗性。尽管利用这一概念在重要作物中推出具有农艺性状的产品一直难以实现,但已经开发出了一些商业产品,包括用于日常生活的酶,如处理果汁、增强棉纤维吸水性或去除衣物上的污渍以及在纺织工业中去除染料。质体基因组序列揭示了绿色植物系统发育的框架,以及质体基因组向其他真核生物转移的复杂历史。质体基因之间不一致的历史信号表明,可能存在跨质体的可变限制,进一步理解和减轻这些限制可能为生物工程带来新的机会。在这篇综述中,我们追溯了叶绿体的进化历史、自主性的现状以及为日常使用或先进到临床开发的产品的最新进展,包括治疗 COVID-19 患者和 SARS-CoV-2 疫苗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37cb/11385678/dae8f43569de/PBI-19-430-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验