Department of Education, University of California, Los Angeles, 3141 Moore Hall, 457 Portola Avenue, Los Angeles, CA, 90024, USA.
Ohio State University, 225 Psychology Building 1835 Neil Avenue, Columbus, OH, 43210, USA.
Psychometrika. 2021 Mar;86(1):239-271. doi: 10.1007/s11336-020-09741-2. Epub 2021 Jan 24.
In this paper, we propose a joint modeling approach to analyze dependency in parallel response data. We define two types of dependency: higher-level dependency and within-item conditional dependency. While higher-level dependency can be estimated with common latent variable modeling approaches, within-item conditional dependency is a unique kind of information that is often not captured with extant methods, despite its potential to shed new insights into the relationship between the two types of response data. We differentiate three ways of modeling within-item conditional dependency by conditioning on raw values, expected values, or residual values of the response data, which have different implications in terms of response processes. The proposed approach is illustrated with the example of analyzing parallel data on response accuracy and brain activations from a Theory of Mind assessment. The consequence of ignoring within-item conditional dependency is investigated with empirical and simulation studies in comparison to conventional dependency analysis that focuses exclusively on relationships between latent variables.
在本文中,我们提出了一种联合建模方法来分析并行响应数据中的依存关系。我们定义了两种类型的依存关系:高层依存关系和项目内条件依存关系。虽然高层依存关系可以用常见的潜在变量建模方法来估计,但项目内条件依存关系是一种独特的信息,尽管它有可能深入了解两种类型的响应数据之间的关系,但现有的方法往往无法捕捉到这种信息。我们通过对响应数据的原始值、期望值或残差进行条件化,区分了三种建模项目内条件依存关系的方法,这在响应过程方面具有不同的意义。我们通过分析来自心理理论评估的并行响应准确性和大脑激活数据的示例来说明所提出的方法。通过与仅关注潜在变量之间关系的传统依存关系分析进行比较,通过实证和模拟研究来探讨忽略项目内条件依存关系的后果。