Suppr超能文献

关于个性化医疗的因果推断:隐藏的因果假设如何导致关于D值的错误因果声明。

On Causal Inferences for Personalized Medicine: How Hidden Causal Assumptions Led to Erroneous Causal Claims About the D-Value.

作者信息

Greenland Sander, Fay Michael P, Brittain Erica H, Shih Joanna H, Follmann Dean A, Gabriel Erin E, Robins James M

机构信息

Department of Epidemiology and Department of Statistics, University of California, Los Angeles, CA, U.S.A.,

Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, Bethesda MD, U.S.A.

出版信息

Am Stat. 2020;74(3):243-248. doi: 10.1080/00031305.2019.1575771. Epub 2019 May 20.

Abstract

Personalized medicine asks if a new treatment will help a particular patient, rather than if it improves the average response in a population. Without a causal model to distinguish these questions, interpretational mistakes arise. These mistakes are seen in an article by Demidenko [2016] that recommends the "D-value," which is the probability that a randomly chosen person from the new-treatment group has a higher value for the outcome than a randomly chosen person from the control-treatment group. The abstract states "The D-value has a clear interpretation as the proportion of patients who get worse after the treatment" with similar assertions appearing later. We show these statements are incorrect because they require assumptions about the potential outcomes which are neither testable in randomized experiments nor plausible in general. The D-value will equal the proportion of patients who get worse after treatment if (as expected) those outcomes are correlated. Independence of potential outcomes is unrealistic and eliminates personalized treatment effects; with dependence, the D-value can even imply treatment is better than control . Thus, D-values are misleading for personalized medicine. To prevent misunderstandings, we advise incorporating causal models into basic statistics education.

摘要

个性化医疗关注的是一种新疗法是否对某个特定患者有帮助,而非它是否能提高总体人群的平均反应。如果没有一个因果模型来区分这些问题,就会出现解释错误。这些错误在德米登科[2016年]的一篇文章中有所体现,该文章推荐了“D值”,即从新治疗组中随机选择的一个人在治疗结果上的值高于从对照治疗组中随机选择的一个人的概率。摘要中指出“D值可以明确解释为治疗后病情恶化的患者比例”,随后也出现了类似的表述。我们证明这些说法是错误的,因为它们需要关于潜在结果的假设,而这些假设在随机试验中无法检验,在一般情况下也不太合理。如果(如预期的那样)这些结果是相关的,那么D值将等于治疗后病情恶化的患者比例。潜在结果的独立性是不现实的,并且会消除个性化治疗效果;而在存在相关性的情况下,D值甚至可能意味着治疗优于对照。因此,D值在个性化医疗中具有误导性。为防止误解,我们建议将因果模型纳入基础统计学教育中。

相似文献

2
4
6
Causal criteria and the problem of complex causation.因果标准与复杂因果关系问题。
Med Health Care Philos. 2009 Aug;12(3):333-43. doi: 10.1007/s11019-009-9182-2. Epub 2009 Feb 14.
10
Objective causal predictions from observational data.来自观测数据的客观因果预测。
Crit Rev Toxicol. 2024 Nov;54(10):895-924. doi: 10.1080/10408444.2024.2399856. Epub 2024 Oct 15.

本文引用的文献

5
The -Value You Can't Buy.你买不到的价值。
Am Stat. 2016 Jan 2;70(1):33-38. doi: 10.1080/00031305.2015.1069760. Epub 2016 Mar 31.
7
P-Value Precision and Reproducibility.P值的精确性与可重复性。
Am Stat. 2011;65(4):213-221. doi: 10.1198/tas.2011.10129. Epub 2012 Jan 24.
8
Understanding equivalence and noninferiority testing.理解等效性和非劣效性检验。
J Gen Intern Med. 2011 Feb;26(2):192-6. doi: 10.1007/s11606-010-1513-8. Epub 2010 Sep 21.
10
Two cheers for P-values?
J Epidemiol Biostat. 2001;6(2):193-204; discussion 205-10. doi: 10.1080/135952201753172953.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验