Harrison Linda J, Bosch Ronald J
Center for Biostatistics in AIDS Research, Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, Massachusetts, USA.
Pharm Stat. 2025 Sep-Oct;24(5):e70036. doi: 10.1002/pst.70036.
There is a renewed interest in defining the target of estimation when designing randomized trials. Motivated by design work in trials of HIV-1 curative interventions, we compare the Wilcoxon-Mann-Whitney (WMW) estimand to a difference in medians or means in a two-arm study. First, we define each estimand along with an appropriate estimator. Then, we highlight relevant asymptotic relative efficiency (ARE) results for the estimators under normal distributions (ARE: WMW/mean = , median/mean = , median/WMW = ), as well as normal mixtures. Measurement of outcomes related to HIV-1 cure involve laboratory assays with lower limits of quantification giving rise to left-censored data. In our simulation study, we compare the estimators in the presence of left-censored observations and at small sample sizes, illustrating that under a censored normal mixture distribution the WMW approach is unbiased, powerful, and has confidence intervals with nominal coverage. We apply our findings to a randomized trial designed to reduce HIV-1 reservoirs. We further expose several extensions of the WMW approach that allows for assessment of interactions between subgroups in a trial, adjustment for covariates, and general ranking methods for clinical outcomes in other disease areas. We end with a discussion summarizing the merits of a WMW based intervention effect estimate versus an estimate summarized on the scale the intervention was originally measured such as the difference in medians or means.
在设计随机试验时,人们对确定估计目标重新产生了兴趣。受HIV-1治愈性干预试验设计工作的启发,我们在双臂研究中将Wilcoxon-Mann-Whitney(WMW)估计量与中位数或均值的差异进行比较。首先,我们定义每个估计量以及合适的估计器。然后,我们突出了在正态分布(渐近相对效率:WMW/均值 = ,中位数/均值 = ,中位数/WMW = )以及正态混合分布下估计器的相关渐近相对效率(ARE)结果。与HIV-1治愈相关的结果测量涉及定量下限的实验室检测,从而产生左删失数据。在我们的模拟研究中,我们比较了存在左删失观测值和小样本量情况下的估计器,表明在删失正态混合分布下,WMW方法是无偏的、强大的,并且具有名义覆盖率的置信区间。我们将研究结果应用于一项旨在减少HIV-1病毒库的随机试验。我们进一步阐述了WMW方法的几个扩展,这些扩展允许评估试验中亚组之间的相互作用、对协变量进行调整以及用于其他疾病领域临床结果的一般排序方法。最后我们进行了讨论,总结了基于WMW的干预效果估计相对于以干预最初测量尺度(如中位数或均值的差异)总结的估计的优点。