Suppr超能文献

使用聚焦时间延迟神经网络从简化导联集重建12导联心电图

The Reconstruction of a 12-Lead Electrocardiogram from a Reduced Lead Set Using a Focus Time-Delay Neural Network.

作者信息

Smith Gerard H, Van den Heever Dawie J, Swart Wayne

机构信息

Biomedical Engineering Research Group, Department of Mechanical and Mechatronic Engineering, Stellenbosch University, South Africa.

出版信息

Acta Cardiol Sin. 2021 Jan;37(1):47-57. doi: 10.6515/ACS.202101_37(1).20200712A.

Abstract

BACKGROUND

The 12-lead electrocardiogram (ECG) is the gold-standard ECG method used by cardiologists. However, accurate electrode placement is difficult and time consuming, and can lead to incorrect interpretation.

OBJECTIVES

The objective of this study was to accurately reconstruct a full 12-lead ECG from a reduced lead set.

METHODS

Five-electrode placement was used to generate leads I, II, III, aVL, aVR, aVF and V2. These seven leads served as inputs to the focus time-delay neural network (FTDNN) which derived the remaining five precordial leads (V1, V3-V6). An online archived medical database containing 549 cases of ECG recordings was used to train, validate and test the FTDNN.

RESULTS

After removing outliers, the reconstructed leads exhibited correlation values of between 0.8609 and 0.9678 as well as low root mean square error values of between 123 μV and 245 μV across all cases, for both healthy controls and cardiovascular disease subgroups except the bundle branch block disease subgroup. The results of the FTDNN method compared favourably to those of prior lead reconstruction methods.

CONCLUSIONS

A standard 12-lead ECG was successfully reconstructed with high quantitative correlations from a reduced lead set using only five electrodes, of which four were placed on the limbs. Less reliance on precordial leads will aid in the reduction of electrode placement errors, ultimately improving ECG lead accuracy and reduce the number of cases that are incorrectly diagnosed.

摘要

背景

12导联心电图(ECG)是心脏病专家使用的金标准心电图方法。然而,准确放置电极既困难又耗时,还可能导致解读错误。

目的

本研究的目的是从减少的导联组中准确重建完整的12导联心电图。

方法

采用五电极放置法生成I、II、III、aVL、aVR、aVF和V2导联。这七个导联作为焦点时延神经网络(FTDNN)的输入,该网络推导出其余五个胸导联(V1、V3-V6)。使用一个包含549例心电图记录的在线存档医学数据库对FTDNN进行训练、验证和测试。

结果

去除异常值后,对于健康对照组和除束支传导阻滞疾病亚组外的心血管疾病亚组,所有病例中重建导联的相关值在0.8609至0.9678之间,均方根误差值较低,在123μV至245μV之间。FTDNN方法的结果优于先前的导联重建方法。

结论

仅使用五个电极(其中四个放置在四肢)从减少的导联组中成功重建了具有高定量相关性的标准12导联心电图。减少对胸导联的依赖将有助于减少电极放置错误,最终提高心电图导联的准确性,并减少误诊病例的数量。

相似文献

7
Where do derived precordial leads fail?衍生的心前区导联在哪些方面存在不足?
J Electrocardiol. 2008 Nov-Dec;41(6):546-52. doi: 10.1016/j.jelectrocard.2008.07.018. Epub 2008 Sep 24.
9
Effects of electrode placement errors in the EASI-derived 12-lead electrocardiogram.EASI衍生12导联心电图中电极放置误差的影响。
J Electrocardiol. 2010 Nov-Dec;43(6):606-11. doi: 10.1016/j.jelectrocard.2010.07.004. Epub 2010 Sep 15.

引用本文的文献

1
Reconstruction of 12-lead ECG: a review of algorithms.12导联心电图重建:算法综述
Front Physiol. 2025 Apr 25;16:1532284. doi: 10.3389/fphys.2025.1532284. eCollection 2025.
2
A novel method for 12-lead ECG reconstruction.一种用于12导联心电图重建的新方法。
Conf Rec Asilomar Conf Signals Syst Comput. 2023 Oct-Nov;2023:1054-1058. doi: 10.1109/ieeeconf59524.2023.10476822.
5
12-Lead ECG Reconstruction Based on Data From the First Limb Lead.基于首肢导联数据的 12 导联心电图重建。
Cardiovasc Eng Technol. 2024 Jun;15(3):346-358. doi: 10.1007/s13239-024-00719-0. Epub 2024 Feb 29.
8
Exercise Test for Patients with Long QT Syndrome.长QT综合征患者的运动试验
Acta Cardiol Sin. 2022 Mar;38(2):124-133. doi: 10.6515/ACS.202203_38(2).20211101A.

本文引用的文献

3
The effect of precordial lead displacement on ECG morphology.胸前导联位置改变对心电图形态的影响。
Med Biol Eng Comput. 2014 Feb;52(2):109-19. doi: 10.1007/s11517-013-1115-9. Epub 2013 Oct 19.
4
Derivation of the 12-lead electrocardiogram and 3-lead vectorcardiogram.十二导联心电图和三导联向量心电图的推导。
Am J Emerg Med. 2013 Aug;31(8):1183-90. doi: 10.1016/j.ajem.2013.04.037. Epub 2013 Jun 27.
6
Reconstructing ECG precordial leads from a reduced lead set using independent component analysis.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:4414-7. doi: 10.1109/IEMBS.2011.6091095.
8
Heart-vector and leads.
Br Heart J. 1946 Jul;8:157-61.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验