Suppr超能文献

使用一种新颖的深度学习方法从Frank导联或EASI导联进行可穿戴12导联心电图采集并进行临床验证。

Wearable 12-Lead ECG Acquisition Using a Novel Deep Learning Approach from Frank or EASI Leads with Clinical Validation.

作者信息

Fu Fan, Zhong Dacheng, Liu Jiamin, Xu Tianxiang, Shen Qin, Wang Wei, Zhu Songsheng, Li Jianqing

机构信息

School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China.

The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.

出版信息

Bioengineering (Basel). 2024 Mar 21;11(3):293. doi: 10.3390/bioengineering11030293.

Abstract

The 12-lead electrocardiogram (ECG) is crucial in assessing patient decisions. However, portable ECG devices capable of acquiring a complete 12-lead ECG are scarce. For the first time, a deep learning-based method is proposed to reconstruct the 12-lead ECG from Frank leads (V, V, and V) or EASI leads (V, V, and V). The innovative ECG reconstruction network called M2Eformer is composed of a 2D-ECGblock and a ProbDecoder module. The 2D-ECGblock module adaptively segments EASI leads into multi-periods based on frequency energy, transforming the 1D time series into a 2D tensor representing within-cycle and between-cycle variations. The ProbDecoder module aims to extract Probsparse self-attention and achieve one-step output for the target leads. Experimental results from comparing recorded and reconstructed 12-lead ECG using Frank leads indicate that M2Eformer outperforms traditional ECG reconstruction methods on a public database. In this study, a self-constructed database (10 healthy individuals + 15 patients) was utilized for the clinical diagnostic validation of ECG reconstructed from EASI leads. Subsequently, both the ECG reconstructed using EASI and the recorded 12-lead ECG were subjected to a double-blind diagnostic experiment conducted by three cardiologists. The overall diagnostic consensus among three cardiology experts, reaching a rate of 96%, indicates the significant utility of EASI-reconstructed 12-lead ECG in facilitating the diagnosis of cardiac conditions.

摘要

12导联心电图(ECG)在评估患者决策方面至关重要。然而,能够获取完整12导联心电图的便携式ECG设备却很稀缺。首次提出了一种基于深度学习的方法,用于从Frank导联(V、V和V)或EASI导联(V、V和V)重建12导联心电图。名为M2Eformer的创新型心电图重建网络由一个二维心电图模块(2D-ECGblock)和一个概率解码器模块(ProbDecoder)组成。二维心电图模块基于频率能量将EASI导联自适应地分割为多个周期,将一维时间序列转换为表示周期内和周期间变化的二维张量。概率解码器模块旨在提取概率稀疏自注意力,并对目标导联实现一步输出。使用Frank导联比较记录的和重建的12导联心电图的实验结果表明,在一个公共数据库上,M2Eformer优于传统的心电图重建方法。在本研究中,一个自建数据库(10名健康个体 + 15名患者)被用于对从EASI导联重建的心电图进行临床诊断验证。随后,使用EASI重建的心电图和记录的12导联心电图都接受了由三位心脏病专家进行的双盲诊断实验。三位心脏病专家之间的总体诊断一致性达到了96%,这表明EASI重建的12导联心电图在促进心脏病诊断方面具有显著效用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfa6/10967908/4d484cfd0ad2/bioengineering-11-00293-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验