文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过三导联实现人工智能增强的12导联心电图重建及准确的临床评估。

AI-enhanced reconstruction of the 12-lead electrocardiogram via 3-leads with accurate clinical assessment.

作者信息

Mason Federico, Pandey Amitabh C, Gadaleta Matteo, Topol Eric J, Muse Evan D, Quer Giorgio

机构信息

Scripps Research Translational Institute, La Jolla, 92037, CA, USA.

Department of Information Engineering, University of Padova, Padova, 35131, Italy.

出版信息

NPJ Digit Med. 2024 Aug 1;7(1):201. doi: 10.1038/s41746-024-01193-7.


DOI:10.1038/s41746-024-01193-7
PMID:39090394
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11294561/
Abstract

The 12-lead electrocardiogram (ECG) is an integral component to the diagnosis of a multitude of cardiovascular conditions. It is performed using a complex set of skin surface electrodes, limiting its use outside traditional clinical settings. We developed an artificial intelligence algorithm, trained over 600,000 clinically acquired ECGs, to explore whether fewer leads as input are sufficient to reconstruct a 12-lead ECG. Two limb leads (I and II) and one precordial lead (V3) were required to generate a reconstructed 12-lead ECG highly correlated with the original ECG. An automatic algorithm for detection of ECG features consistent with acute myocardial infarction (MI) performed similarly for original and reconstructed ECGs (AUC = 0.95). When interpreted by cardiologists, reconstructed ECGs achieved an accuracy of 81.4 ± 5.0% in identifying ECG features of ST-segment elevation MI, comparable with the original 12-lead ECGs (accuracy 84.6 ± 4.6%). These results will impact development efforts to innovate ECG acquisition methods with simplified tools in non-specialized settings.

摘要

12导联心电图(ECG)是多种心血管疾病诊断中不可或缺的组成部分。它通过一组复杂的皮肤表面电极进行检测,这限制了其在传统临床环境之外的使用。我们开发了一种人工智能算法,该算法在超过60万份临床采集的心电图上进行训练,以探究较少的导联作为输入是否足以重建12导联心电图。生成与原始心电图高度相关的重建12导联心电图需要两个肢体导联(I和II)和一个胸前导联(V3)。一种用于检测与急性心肌梗死(MI)一致的心电图特征的自动算法,对原始心电图和重建心电图的表现相似(曲线下面积[AUC]=0.95)。当由心脏病专家解读时,重建心电图在识别ST段抬高型心肌梗死的心电图特征方面的准确率为81.4±5.0%,与原始12导联心电图相当(准确率84.6±4.6%)。这些结果将影响在非专业环境中使用简化工具创新心电图采集方法的开发工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1577/11294561/f46ce66050dd/41746_2024_1193_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1577/11294561/06ba58303ce7/41746_2024_1193_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1577/11294561/4339da469c49/41746_2024_1193_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1577/11294561/69f8cae403f3/41746_2024_1193_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1577/11294561/3939b39ec358/41746_2024_1193_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1577/11294561/f46ce66050dd/41746_2024_1193_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1577/11294561/06ba58303ce7/41746_2024_1193_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1577/11294561/4339da469c49/41746_2024_1193_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1577/11294561/69f8cae403f3/41746_2024_1193_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1577/11294561/3939b39ec358/41746_2024_1193_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1577/11294561/f46ce66050dd/41746_2024_1193_Fig5_HTML.jpg

相似文献

[1]
AI-enhanced reconstruction of the 12-lead electrocardiogram via 3-leads with accurate clinical assessment.

NPJ Digit Med. 2024-8-1

[2]
AI-Enhanced Reconstruction of the 12-Lead Electrocardiogram via 3-Leads with Accurate Clinical Assessment.

medRxiv. 2024-1-30

[3]
Automated Detection of Acute Myocardial Infarction Using Asynchronous Electrocardiogram Signals-Preview of Implementing Artificial Intelligence With Multichannel Electrocardiographs Obtained From Smartwatches: Retrospective Study.

J Med Internet Res. 2021-9-10

[4]
Where do derived precordial leads fail?

J Electrocardiol. 2008

[5]
Classification of myocardial infarction based on hybrid feature extraction and artificial intelligence tools by adopting tunable-Q wavelet transform (TQWT), variational mode decomposition (VMD) and neural networks.

Artif Intell Med. 2020-6

[6]
Early detection of ST-segment elevated myocardial infarction by artificial intelligence with 12-lead electrocardiogram.

Int J Cardiol. 2020-10-15

[7]
Evaluation of ST segment elevation criteria for the prehospital electrocardiographic diagnosis fo acute myocardial infarction.

Ann Emerg Med. 1994-1

[8]
[Doubts of the cardiologist regarding an electrocardiogram presenting QRS V1-V2 complexes with positive terminal wave and ST segment elevation. Consensus Conference promoted by the Italian Cardiology Society].

G Ital Cardiol (Rome). 2010-11

[9]
Information on myocardial ischemia and arrhythmias added by prehospital electrocardiograms.

Prehosp Emerg Care. 2013-2-15

[10]
Artificial intelligence-enabled 8-lead ECG detection of atrial septal defect among adults: a novel diagnostic tool.

Front Cardiovasc Med. 2023-11-13

本文引用的文献

[1]
Prediction of atrial fibrillation from at-home single-lead ECG signals without arrhythmias.

NPJ Digit Med. 2023-12-12

[2]
Lead Reconstruction Using Artificial Neural Networks for Ambulatory ECG Acquisition.

Sensors (Basel). 2021-8-18

[3]
A Comprehensive Explanation Framework for Biomedical Time Series Classification.

IEEE J Biomed Health Inform. 2021-7

[4]
Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association.

Circulation. 2021-2-23

[5]
The Reconstruction of a 12-Lead Electrocardiogram from a Reduced Lead Set Using a Focus Time-Delay Neural Network.

Acta Cardiol Sin. 2021-1

[6]
Automatic multilabel electrocardiogram diagnosis of heart rhythm or conduction abnormalities with deep learning: a cohort study.

Lancet Digit Health. 2020-7

[7]
Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study.

J Am Coll Cardiol. 2020-12-22

[8]
Artificial intelligence algorithm for detecting myocardial infarction using six-lead electrocardiography.

Sci Rep. 2020-11-24

[9]
2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation.

Eur Heart J. 2021-4-7

[10]
Machine learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram.

Nat Commun. 2020-8-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索