Lužná Vendula, Houdek Pavel, Liška Karolína, Sumová Alena
Laboratory of Biological Rhythms, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia.
Front Neurosci. 2021 Jan 7;14:613531. doi: 10.3389/fnins.2020.613531. eCollection 2020.
During fetal stage, maternal circadian system sets the phase of the developing clock in the suprachiasmatic nuclei (SCN) via complex pathways. We addressed the issue of how impaired maternal signaling due to a disturbed environmental light/dark (LD) cycle affects the fetal SCN. We exposed pregnant Wistar rats to two different challenges - a 6-h phase shift in the LD cycle on gestational day 14, or exposure to constant light (LL) throughout pregnancy - and detected the impact on gene expression profiles in 19-day-old fetuses. The LD phase shift, which changed the maternal SCN into a transient state, caused robust downregulation of expression profiles of clock genes (, , and ), clock-controlled () genes, as well as genes involved in sensing various signals, such as and . Removal of the rhythmic maternal signals via exposure of pregnant rats to LL abolished the rhythms in expression of and in the fetal SCN. We identified as the gene primarily responsible for sensing rhythmic maternal signals because its expression profile tracked the shifted or arrhythmic maternal SCN clock. Pathways related to the maternal rhythmic behavioral state were likely not involved in driving the expression rhythm. Instead, introduction of a behavioral rhythm to LL-exposed mothers via restricted feeding regime strengthened rhythm in expression in the fetal SCN. Our results revealed for the first time that the fetal SCN is highly sensitive in a gene-specific manner to various changes in maternal signaling due to disturbances of environmental cycles related to the modern lifestyle in humans.
在胎儿期,母体昼夜节律系统通过复杂途径设定视交叉上核(SCN)中发育中的生物钟的相位。我们探讨了由于环境光/暗(LD)周期紊乱导致的母体信号受损如何影响胎儿SCN的问题。我们将怀孕的Wistar大鼠暴露于两种不同的挑战——在妊娠第14天对LD周期进行6小时的相位转换,或在整个孕期暴露于持续光照(LL)——并检测对19日龄胎儿基因表达谱的影响。LD相位转换使母体SCN进入短暂状态,导致生物钟基因(、和)、生物钟控制的()基因以及参与感知各种信号(如和)的基因的表达谱强烈下调。通过将怀孕大鼠暴露于LL来消除有节律的母体信号,消除了胎儿SCN中基因和的表达节律。我们确定基因是主要负责感知有节律的母体信号的基因,因为其表达谱跟踪了移位或无节律的母体SCN生物钟。与母体节律性行为状态相关的途径可能不参与驱动基因的表达节律。相反,通过限制喂养方式给暴露于LL的母亲引入行为节律,增强了胎儿SCN中基因表达的节律。我们的结果首次揭示,由于与人类现代生活方式相关的环境周期紊乱,胎儿SCN以基因特异性方式对母体信号的各种变化高度敏感。