Kembuan Cynthia, Oliveira Helena, Graf Christina
Institut für Chemie und Biochemie, Physikalische und Theoretische Chemie, Freie Universität Berlin, Takustraße 3, D-14195 Berlin, Germany.
Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
Beilstein J Nanotechnol. 2021 Jan 8;12:35-48. doi: 10.3762/bjnano.12.3. eCollection 2021.
Upconversion nanoparticles (UCNPs), consisting of NaYF doped with 18% Yb and 2% Er, were coated with microporous silica shells with thickness values of 7 ± 2 and 21 ± 3 nm. Subsequently, the negatively charged particles were functionalized with -(6-aminohexyl)-3-aminopropyltrimethoxysilane (AHAPS), which provide a positive charge to the nanoparticle surface. Inductively coupled plasma optical emission spectrometry (ICP-OES) measurements revealed that, over the course of 24h, particles with thicker shells release fewer lanthanide ions than particles with thinner shells. However, even a 21 ± 3 nm thick silica layer does not entirely block the disintegration process of the UCNPs. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays and cell cytometry measurements performed on macrophages (RAW 264.7 cells) indicate that cells treated with amino-functionalized particles with a thicker silica shell have a higher viability than those incubated with UCNPs with a thinner silica shell, even if more particles with a thicker shell are taken up. This effect is less significant for negatively charged particles. Cell cycle analyses with amino-functionalized particles also confirm that thicker silica shells reduce cytotoxicity. Thus, growing silica shells to a sufficient thickness is a simple approach to minimize the cytotoxicity of UCNPs.
上转换纳米颗粒(UCNPs)由掺杂18%镱(Yb)和2%铒(Er)的NaYF组成,表面包覆有厚度分别为7±2纳米和21±3纳米的微孔二氧化硅壳层。随后,带负电荷的颗粒用-(6-氨基己基)-3-氨丙基三甲氧基硅烷(AHAPS)进行功能化处理,使纳米颗粒表面带正电荷。电感耦合等离子体发射光谱法(ICP-OES)测量结果显示,在24小时的过程中,壳层较厚的颗粒比壳层较薄的颗粒释放的镧系离子更少。然而,即使是21±3纳米厚的二氧化硅层也不能完全阻止UCNPs的分解过程。对巨噬细胞(RAW 264.7细胞)进行的3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四氮唑溴盐(MTT)检测和细胞流式分析表明,用壳层较厚的氨基功能化颗粒处理的细胞比用壳层较薄的UCNPs处理的细胞具有更高的活力,即使前者摄取了更多壳层较厚的颗粒。这种效应对于带负电荷的颗粒不太明显。对氨基功能化颗粒进行的细胞周期分析也证实,较厚的二氧化硅壳层可降低细胞毒性。因此,将二氧化硅壳层生长到足够的厚度是一种简单的方法,可以最大限度地降低UCNPs的细胞毒性。