Morris Benjamin B, Wages Nolan A, Grant Patrick A, Stukenberg P Todd, Gentzler Ryan D, Hall Richard D, Akerley Wallace L, Varghese Thomas K, Arnold Susanne M, Williams Terence M, Coppola Vincenzo, Jones David R, Auble David T, Mayo Marty W
Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, United States.
Department of Pathology, University of Virginia, Charlottesville, VA, United States.
Front Oncol. 2021 Jan 8;10:585551. doi: 10.3389/fonc.2020.585551. eCollection 2020.
It has long been recognized that defects in cell cycle checkpoint and DNA repair pathways give rise to genomic instability, tumor heterogeneity, and metastasis. Despite this knowledge, the transcription factor-mediated gene expression programs that enable survival and proliferation in the face of enormous replication stress and DNA damage have remained elusive. Using robust omics data from two independent studies, we provide evidence that a large cohort of lung adenocarcinomas exhibit significant genome instability and overexpress the DNA damage responsive transcription factor MYB proto-oncogene like 2 (MYBL2). Across two studies, elevated expression was a robust marker of poor overall survival and disease-free survival outcomes, regardless of disease stage. Clinically, elevated expression identified patients with aggressive early onset disease, increased lymph node involvement, and increased incidence of distant metastases. Analysis of genomic sequencing data demonstrated that High lung adenocarcinomas had elevated somatic mutation burden, widespread chromosomal alterations, and alterations in single-strand DNA break repair pathways. In this study, we provide evidence that impaired single-strand break repair, combined with a loss of cell cycle regulators TP53 and RB1, give rise to MYBL2-mediated transcriptional programs. Omics data supports a model wherein tumors with significant genomic instability upregulate MYBL2 to drive genes that control replication stress responses, promote error-prone DNA repair, and antagonize faithful homologous recombination repair. Our study supports the use of checkpoint kinase 1 (CHK1) pharmacological inhibitors, in targeted High patient cohorts, as a future therapy to improve lung adenocarcinoma patient outcomes.
长期以来,人们已经认识到细胞周期检查点和DNA修复途径的缺陷会导致基因组不稳定、肿瘤异质性和转移。尽管有这些认识,但在面对巨大的复制应激和DNA损伤时能够实现存活和增殖的转录因子介导的基因表达程序仍然难以捉摸。利用来自两项独立研究的强大组学数据,我们提供证据表明,大量肺腺癌队列表现出显著的基因组不稳定,并过度表达DNA损伤反应转录因子MYB原癌基因样2(MYBL2)。在两项研究中,无论疾病阶段如何,MYBL2表达升高都是总体生存率和无病生存率差的有力标志物。在临床上,MYBL2表达升高可识别出具有侵袭性早发疾病、淋巴结受累增加和远处转移发生率增加的患者。对基因组测序数据的分析表明,高MYBL2表达的肺腺癌具有升高的体细胞突变负担、广泛的染色体改变以及单链DNA断裂修复途径的改变。在本研究中,我们提供证据表明,单链断裂修复受损,加上细胞周期调节因子TP53和RB1的缺失,导致了MYBL2介导的转录程序。组学数据支持一种模型,即具有显著基因组不稳定的肿瘤上调MYBL2以驱动控制复制应激反应、促进易出错的DNA修复并拮抗忠实同源重组修复的基因。我们的研究支持在靶向高MYBL2表达的患者队列中使用检查点激酶1(CHK1)药理学抑制剂作为未来改善肺腺癌患者预后的治疗方法。