Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY 10065, USA.
Sci Adv. 2020 Apr 8;6(15):eaaz4295. doi: 10.1126/sciadv.aaz4295. eCollection 2020 Apr.
Cytoplasmic dynein is a highly complex motor protein that generates forces toward the minus end of microtubules. Using optical tweezers, we demonstrate that the low processivity (ability to take multiple steps before dissociating) of human dynein limits its force generation due to premature microtubule dissociation. Using a high trap stiffness whereby the motor achieves greater force per step, we reveal that the motor's true maximal force ("stall force") is ~2 pN. Furthermore, an average force versus trap stiffness plot yields a hyperbolic curve that plateaus at the stall force. We derive an analytical equation that accurately describes this curve, predicting both stall force and zero-load processivity. This theoretical model describes the behavior of a kinesin motor under low-processivity conditions. Our work clarifies the true stall force and processivity of human dynein and provides a new paradigm for understanding and analyzing molecular motor force generation for weakly processive motors.
细胞质动力蛋白是一种高度复杂的分子马达,能够向微管的负端产生力。我们利用光镊实验证明,人类动力蛋白的低行进性(即在解离之前能够进行多次步移的能力)会导致微管提前解离,从而限制其力的产生。通过使用高捕获刚度,使马达在每一步中产生更大的力,我们揭示了马达的真实最大力(“失速力”)约为 2 pN。此外,平均力与捕获刚度的关系图呈现出一个双曲线曲线,在失速力处达到平台。我们推导出一个能够准确描述该曲线的解析方程,预测失速力和空载行进性。该理论模型描述了在低行进性条件下驱动蛋白马达的行为。我们的工作阐明了人类动力蛋白的真实失速力和行进性,并为理解和分析弱行进性分子马达的分子马达力的产生提供了一个新的范例。