Engwer Christian, Wenske Michael
Institut für Numerische und Angewandte Mathematik, WWU Münster, Münster, Germany.
J Math Biol. 2021 Jan 26;82(1-2):10. doi: 10.1007/s00285-021-01563-9.
Glioblastoma Multiforme is a malignant brain tumor with poor prognosis. There have been numerous attempts to model the invasion of tumorous glioma cells via partial differential equations in the form of advection-diffusion-reaction equations. The patient-wise parametrization of these models, and their validation via experimental data has been found to be difficult, as time sequence measurements are mostly missing. Also the clinical interest lies in the actual (invisible) tumor extent for a particular MRI/DTI scan and not in a predictive estimate. Therefore we propose a stationalized approach to estimate the extent of glioblastoma (GBM) invasion at the time of a given MRI/DTI scan. The underlying dynamics can be derived from an instationary GBM model, falling into the wide class of advection-diffusion-reaction equations. The stationalization is introduced via an analytic solution of the Fisher-KPP equation, the simplest model in the considered model class. We investigate the applicability in 1D and 2D, in the presence of inhomogeneous diffusion coefficients and on a real 3D DTI-dataset.
多形性胶质母细胞瘤是一种预后较差的恶性脑肿瘤。人们已经进行了大量尝试,通过对流 - 扩散 - 反应方程形式的偏微分方程来模拟肿瘤性胶质瘤细胞的侵袭。由于大多缺少时间序列测量,这些模型的患者个体化参数化以及通过实验数据进行验证都很困难。此外,临床关注的是特定MRI/DTI扫描时实际的(不可见的)肿瘤范围,而非预测估计。因此,我们提出一种稳态方法来估计给定MRI/DTI扫描时胶质母细胞瘤(GBM)的侵袭范围。其潜在动力学可从一个非稳态GBM模型推导得出,该模型属于对流 - 扩散 - 反应方程的广泛类别。通过Fisher - KPP方程的解析解引入稳态,Fisher - KPP方程是所考虑模型类别中最简单的模型。我们研究了在存在非均匀扩散系数的情况下,该方法在一维和二维以及真实三维DTI数据集上的适用性。