Suppr超能文献

GPU加速的灵活分子对接

GPU-Accelerated Flexible Molecular Docking.

作者信息

Fan Mengran, Wang Jian, Jiang Huaipan, Feng Yilin, Mahdavi Mehrdad, Madduri Kamesh, Kandemir Mahmut T, Dokholyan Nikolay V

机构信息

School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States.

出版信息

J Phys Chem B. 2021 Feb 4;125(4):1049-1060. doi: 10.1021/acs.jpcb.0c09051. Epub 2021 Jan 26.

Abstract

Virtual screening is a key enabler of computational drug discovery and requires accurate and efficient structure-based molecular docking. In this work, we develop algorithms and software building blocks for molecular docking that can take advantage of graphics processing units (GPUs). Specifically, we focus on MedusaDock, a flexible protein-small molecule docking approach and platform. We accelerate the performance of the phase of MedusaDock, as this step constitutes nearly 70% of total running time in typical use-cases. We perform a comprehensive evaluation of the quality and performance with single-GPU and multi-GPU acceleration using a data set of 3875 protein-ligand complexes. The algorithmic ideas, data structure design choices, and performance optimization techniques shed light on GPU acceleration of other structure-based molecular docking software tools.

摘要

虚拟筛选是计算药物发现的关键推动因素,需要准确且高效的基于结构的分子对接。在这项工作中,我们开发了可利用图形处理单元(GPU)的分子对接算法和软件组件。具体而言,我们专注于MedusaDock,这是一种灵活的蛋白质 - 小分子对接方法和平台。我们加速了MedusaDock的某个阶段的性能,因为在典型用例中,此步骤占总运行时间的近70%。我们使用包含3875个蛋白质 - 配体复合物的数据集,对单GPU和多GPU加速的质量和性能进行了全面评估。这些算法思想、数据结构设计选择和性能优化技术为其他基于结构的分子对接软件工具的GPU加速提供了启示。

相似文献

1
GPU-Accelerated Flexible Molecular Docking.GPU加速的灵活分子对接
J Phys Chem B. 2021 Feb 4;125(4):1049-1060. doi: 10.1021/acs.jpcb.0c09051. Epub 2021 Jan 26.
4
Uni-Dock: GPU-Accelerated Docking Enables Ultralarge Virtual Screening.Uni-Dock:GPU 加速对接实现超大规模虚拟筛选。
J Chem Theory Comput. 2023 Jun 13;19(11):3336-3345. doi: 10.1021/acs.jctc.2c01145. Epub 2023 Apr 26.
5
Accelerating molecular docking calculations using graphics processing units.利用图形处理单元加速分子对接计算。
J Chem Inf Model. 2011 Apr 25;51(4):865-76. doi: 10.1021/ci100459b. Epub 2011 Mar 24.
8
Accelerating AutoDock Vina with GPUs.使用 GPU 加速 AutoDock Vina。
Molecules. 2022 May 9;27(9):3041. doi: 10.3390/molecules27093041.
10
Fast docking on graphics processing units via Ray-Casting.基于光线投射的图形处理器快速对接。
PLoS One. 2013 Aug 16;8(8):e70661. doi: 10.1371/journal.pone.0070661. eCollection 2013.

引用本文的文献

1
Accelerating AutoDock Vina with GPUs.使用 GPU 加速 AutoDock Vina。
Molecules. 2022 May 9;27(9):3041. doi: 10.3390/molecules27093041.
2
NeuralDock: Rapid and Conformation-Agnostic Docking of Small Molecules.NeuralDock:小分子的快速且与构象无关的对接
Front Mol Biosci. 2022 Mar 22;9:867241. doi: 10.3389/fmolb.2022.867241. eCollection 2022.

本文引用的文献

1
Accelerating AutoDock4 with GPUs and Gradient-Based Local Search.使用 GPU 和基于梯度的局部搜索来加速 AutoDock4。
J Chem Theory Comput. 2021 Feb 9;17(2):1060-1073. doi: 10.1021/acs.jctc.0c01006. Epub 2021 Jan 6.
5
Thermodynamic phase diagram of amyloid-β (16-22) peptide.淀粉样β(16-22)肽的热力学相图。
Proc Natl Acad Sci U S A. 2019 Feb 5;116(6):2091-2096. doi: 10.1073/pnas.1819592116. Epub 2019 Jan 23.
8
GPU Optimizations for a Production Molecular Docking Code.用于生产分子对接代码的GPU优化
IEEE Conf High Perform Extreme Comput. 2014 Sep;2014. doi: 10.1109/HPEC.2014.7040981.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验