Fan Mengran, Wang Jian, Jiang Huaipan, Feng Yilin, Mahdavi Mehrdad, Madduri Kamesh, Kandemir Mahmut T, Dokholyan Nikolay V
School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States.
J Phys Chem B. 2021 Feb 4;125(4):1049-1060. doi: 10.1021/acs.jpcb.0c09051. Epub 2021 Jan 26.
Virtual screening is a key enabler of computational drug discovery and requires accurate and efficient structure-based molecular docking. In this work, we develop algorithms and software building blocks for molecular docking that can take advantage of graphics processing units (GPUs). Specifically, we focus on MedusaDock, a flexible protein-small molecule docking approach and platform. We accelerate the performance of the phase of MedusaDock, as this step constitutes nearly 70% of total running time in typical use-cases. We perform a comprehensive evaluation of the quality and performance with single-GPU and multi-GPU acceleration using a data set of 3875 protein-ligand complexes. The algorithmic ideas, data structure design choices, and performance optimization techniques shed light on GPU acceleration of other structure-based molecular docking software tools.
虚拟筛选是计算药物发现的关键推动因素,需要准确且高效的基于结构的分子对接。在这项工作中,我们开发了可利用图形处理单元(GPU)的分子对接算法和软件组件。具体而言,我们专注于MedusaDock,这是一种灵活的蛋白质 - 小分子对接方法和平台。我们加速了MedusaDock的某个阶段的性能,因为在典型用例中,此步骤占总运行时间的近70%。我们使用包含3875个蛋白质 - 配体复合物的数据集,对单GPU和多GPU加速的质量和性能进行了全面评估。这些算法思想、数据结构设计选择和性能优化技术为其他基于结构的分子对接软件工具的GPU加速提供了启示。