Suppr超能文献

使用惩罚算法鉴定循环血清微小RNA作为胰腺癌的新型生物标志物

Identification of Circulating Serum miRNAs as Novel Biomarkers in Pancreatic Cancer Using a Penalized Algorithm.

作者信息

Lee Jaehoon, Lee Hee Seung, Park Soo Been, Kim Chanyang, Kim Kahee, Jung Dawoon E, Song Si Young

机构信息

Department of Statistics, Seoul National University, Seoul 08733, Korea.

Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea.

出版信息

Int J Mol Sci. 2021 Jan 20;22(3):1007. doi: 10.3390/ijms22031007.

Abstract

Pancreatic cancer (PC) is difficult to detect in the early stages; thus, identifying specific and sensitive biomarkers for PC diagnosis is crucial, especially in the case of early-stage tumors. Circulating microRNAs are promising non-invasive biomarkers. Therefore, we aimed to identify non-invasive miRNA biomarkers and build a model for PC diagnosis. For the training model, blood serum samples from 63 PC patients and 63 control subjects were used. We selected 39 miRNA markers using a smoothly clipped absolute deviation-based penalized support vector machine and built a PC diagnosis model. From the double cross-validation, the average test AUC was 0.98. We validated the diagnosis model using independent samples from 25 PC patients and 81 patients with intrahepatic cholangiocarcinoma (ICC) and compared the results with those obtained from the diagnosis using carbohydrate antigen 19-9. For the markers miR-155-5p, miR-4284, miR-346, miR-7145-5p, miR-5100, miR-661, miR-22-3p, miR-4486, let-7b-5p, and miR-4703-5p, we conducted quantitative reverse transcription PCR using samples from 17 independent PC patients, 8 ICC patients, and 8 healthy individuals. Differential expression was observed in samples from PC patients. The diagnosis model based on the identified markers showed high sensitivity and specificity for PC detection and is potentially useful for early PC diagnosis.

摘要

胰腺癌(PC)在早期难以检测;因此,识别用于PC诊断的特异性和敏感性生物标志物至关重要,尤其是对于早期肿瘤。循环微RNA是很有前景的非侵入性生物标志物。因此,我们旨在识别非侵入性miRNA生物标志物并建立PC诊断模型。对于训练模型,使用了63例PC患者和63例对照受试者的血清样本。我们使用基于平滑截断绝对偏差的惩罚支持向量机选择了39个miRNA标志物,并建立了PC诊断模型。通过双重交叉验证,平均测试AUC为0.98。我们使用来自25例PC患者和81例肝内胆管癌(ICC)患者的独立样本验证了诊断模型,并将结果与使用糖类抗原19-9进行诊断的结果进行比较。对于标志物miR-155-5p、miR-4284、miR-346、miR-7145-5p、miR-5100、miR-661、miR-22-3p、miR-4486、let-7b-5p和miR-4703-5p,我们使用来自17例独立PC患者、8例ICC患者和8例健康个体的样本进行了定量逆转录PCR。在PC患者的样本中观察到差异表达。基于所识别标志物的诊断模型对PC检测显示出高灵敏度和特异性,并且可能对PC早期诊断有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d533/7863930/e140a564125c/ijms-22-01007-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验