Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA.
Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
J Chem Phys. 2021 Jan 21;154(3):034111. doi: 10.1063/5.0031215.
We explore the role of long-range interactions in atomistic machine-learning models by analyzing the effects on fitting accuracy, isolated cluster properties, and bulk thermodynamic properties. Such models have become increasingly popular in molecular simulations given their ability to learn highly complex and multi-dimensional interactions within a local environment; however, many of them fundamentally lack a description of explicit long-range interactions. In order to provide a well-defined benchmark system with precisely known pairwise interactions, we chose as the reference model a flexible version of the Extended Simple Point Charge (SPC/E) water model. Our analysis shows that while local representations are sufficient for predictions of the condensed liquid phase, the short-range nature of machine-learning models falls short in representing cluster and vapor phase properties. These findings provide an improved understanding of the role of long-range interactions in machine learning models and the regimes where they are necessary.
我们通过分析对拟合精度、孤立团簇性质和体相热力学性质的影响,探讨了长程相互作用在原子级机器学习模型中的作用。由于这些模型能够在局部环境中学习高度复杂和多维的相互作用,因此在分子模拟中越来越受欢迎;然而,它们中的许多模型根本没有明确描述显式长程相互作用。为了提供一个具有精确已知对相互作用的明确定义基准系统,我们选择了灵活的扩展简单点电荷(SPC/E)水模型作为参考模型。我们的分析表明,虽然局部表示对于预测凝聚液相是足够的,但机器学习模型的短程性质在表示团簇和气相性质方面存在不足。这些发现提高了我们对长程相互作用在机器学习模型中的作用以及它们在必要时的作用范围的理解。