Suppr超能文献

机器学习在复杂水溶液体系中的应用变得简单。

Machine learning potentials for complex aqueous systems made simple.

机构信息

Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom;

Thomas Young Centre, University College London, London WC1E 6BT, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2021 Sep 21;118(38). doi: 10.1073/pnas.2110077118.

Abstract

Simulation techniques based on accurate and efficient representations of potential energy surfaces are urgently needed for the understanding of complex systems such as solid-liquid interfaces. Here we present a machine learning framework that enables the efficient development and validation of models for complex aqueous systems. Instead of trying to deliver a globally optimal machine learning potential, we propose to develop models applicable to specific thermodynamic state points in a simple and user-friendly process. After an initial ab initio simulation, a machine learning potential is constructed with minimum human effort through a data-driven active learning protocol. Such models can afterward be applied in exhaustive simulations to provide reliable answers for the scientific question at hand or to systematically explore the thermal performance of ab initio methods. We showcase this methodology on a diverse set of aqueous systems comprising bulk water with different ions in solution, water on a titanium dioxide surface, and water confined in nanotubes and between molybdenum disulfide sheets. Highlighting the accuracy of our approach with respect to the underlying ab initio reference, the resulting models are evaluated in detail with an automated validation protocol that includes structural and dynamical properties and the precision of the force prediction of the models. Finally, we demonstrate the capabilities of our approach for the description of water on the rutile titanium dioxide (110) surface to analyze the structure and mobility of water on this surface. Such machine learning models provide a straightforward and uncomplicated but accurate extension of simulation time and length scales for complex systems.

摘要

基于准确高效的势能面表示的模拟技术对于理解固液界面等复杂体系是迫切需要的。在这里,我们提出了一个机器学习框架,能够高效地开发和验证复杂水相体系的模型。我们不是试图提供一个全局最优的机器学习势能,而是提出了一个简单易用的方法,在特定的热力学状态点开发适用的模型。在初始从头算模拟之后,通过数据驱动的主动学习协议,以最小的人为努力构建机器学习势能。这些模型可以应用于详尽的模拟,为当前的科学问题提供可靠的答案,或者系统地探索从头算方法的热性能。我们在一组多样化的水相体系上展示了这种方法,包括含有不同离子的溶液中的体相水、二氧化钛表面上的水、以及纳米管中和二硫化钼片之间的受限水。通过与基础从头算参考的准确性进行对比,突出我们方法的准确性,我们使用包括结构和动力学性质以及模型力预测精度在内的自动验证协议详细评估了得到的模型。最后,我们展示了我们的方法在描述锐钛矿二氧化钛(110)表面上水的能力,以分析该表面上水的结构和迁移性。这种机器学习模型为复杂体系的模拟时间和长度尺度的扩展提供了一种简单直接但准确的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c000/8463804/70e228dda073/pnas.2110077118fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验